000017293 001__ 17293
000017293 005__ 20240711092244.0
000017293 0247_ $$2ISSN$$a1866-1793
000017293 0247_ $$2Handle$$a2128/4559
000017293 020__ $$a978-3-89336-773-3
000017293 037__ $$aPreJuSER-17293
000017293 041__ $$aGerman
000017293 082__ $$a500
000017293 082__ $$a333.7
000017293 082__ $$a620
000017293 1001_ $$0P:(DE-Juel1)VDB102007$$aLüttschwager, Frank$$b0$$eCorresponding author$$gmale$$uFZJ
000017293 245__ $$aRauchgasseitige Korrosion von Nickelbasislegierungen für zukünftige Dampfkraftwerke
000017293 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2011
000017293 300__ $$a145 S.
000017293 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000017293 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000017293 3367_ $$02$$2EndNote$$aThesis
000017293 3367_ $$2DRIVER$$adoctoralThesis
000017293 3367_ $$2BibTeX$$aPHDTHESIS
000017293 3367_ $$2DataCite$$aOutput Types/Dissertation
000017293 3367_ $$2ORCID$$aDISSERTATION
000017293 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich : Energie & Umwelt / Energy & Environment$$v132
000017293 502__ $$aRWTH Aachen, Diss., 2011$$bDr. (Univ.)$$cRWTH Aachen$$d2011
000017293 500__ $$3POF3_Assignment on 2016-02-29
000017293 500__ $$aRecord converted from JUWEL: 18.07.2013
000017293 500__ $$aRecord converted from VDB: 12.11.2012
000017293 520__ $$aCoal is still the most important energy source in Germany. In 2009 it produced 42.9 % of the overall German electrical power. Coal is available world-wide in large quantities and can be delivered economically. One of the possible ways to reduce CO$_{2}$ pollution is the increase of efficiency of coal fired power plants, which requires steam conditions of up to 700 °C – 730 °C and 350 bar. Because many German power units will reach the end of their technical lifespan in a few years or the following decade, one will have the possibility to build up modern types of power plants with increased efficiency of more than 50 %. Some international standards (European Pressure Equipment Directive or ASME Boiler and Pressure Vessel Code) require 100 000 hour creep rupture strength of 100 MPa at 750 °C. Therefore, nickel base alloys are in the focus of material qualification processes. Nickel base alloys are well investigated due to their hot corrosion behaviour. It is known that sodium sulphate may generate hot corrosion on those alloys at temperatures above its melting point of 884 °C. On nickel base alloys an eutectic mixture of nickel sulphate and sodium sulphate with a melting point of 671 °C can be generated, which leads to accelerated corrosion. This work examines, whether the high amount of sulphur and alkali metals will induce hot corrosion at the estimated working temperature on devices manufactured from nickel base alloy. Two synthetic coal ash deposits, according to the chemical composition of hard coal and lignite, and typical flue gases with and without sulphur dioxide were blended of pure agents. The reactions of the deposits with heater tubes´ materials and synthetic flue gases are examined in the temperature range from 650 °C to 800 °C and different time ranges up to 2000 hours. The corroded specimen are examined with SEM/EDX to identify relevant corrosion products and determine the corrosivity of deposited compounds. Deposits increase the corrosion rate of nickel base alloys in comparison to air oxidation, even when there is no gaseous sulphur oxide, like SO$_{2}$ or SO$_{3}$. This effect may be found by examining model systems, for example inert deposits like metal oxides, silicates or aluminosilicates and corrosive deposits like alkali sulphates. Kinetic investigations are carried out with a newly developed electrochemical pickling method, which allows to calculate the rates of hot corrosion underneath deposits. A material ranking is given for the alloys 263, 617 and 740, and it can be shown that under coal firing conditions lignite ash is much more corrosive than hard coal ash. Finally, thermodynamical calculations show possible reaction products formed during the combustion of various world market coals in power units. The coals’ potential of corrosion attacks is evaluated qualitatively by using experimental and thermodynamical data.
000017293 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000017293 655_7 $$aHochschulschrift$$xDissertation (Univ.)
000017293 8564_ $$uhttps://juser.fz-juelich.de/record/17293/files/Energie%26Umwelt_132.pdf$$yOpenAccess
000017293 8564_ $$uhttps://juser.fz-juelich.de/record/17293/files/Energie%26Umwelt_132.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000017293 8564_ $$uhttps://juser.fz-juelich.de/record/17293/files/Energie%26Umwelt_132.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000017293 8564_ $$uhttps://juser.fz-juelich.de/record/17293/files/Energie%26Umwelt_132.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000017293 909CO $$ooai:juser.fz-juelich.de:17293$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000017293 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000017293 9141_ $$y2011
000017293 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000017293 9132_ $$0G:(DE-HGF)POF3-119H$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vAddenda$$x0
000017293 920__ $$lyes
000017293 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$gIEK$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000017293 970__ $$aVDB:(DE-Juel1)131744
000017293 9801_ $$aFullTexts
000017293 980__ $$aVDB
000017293 980__ $$aConvertedRecord
000017293 980__ $$aphd
000017293 980__ $$aI:(DE-Juel1)IEK-2-20101013
000017293 980__ $$aUNRESTRICTED
000017293 980__ $$aJUWEL
000017293 980__ $$aFullTexts
000017293 981__ $$aI:(DE-Juel1)IMD-1-20101013