000172968 001__ 172968
000172968 005__ 20240712100849.0
000172968 0247_ $$2doi$$a10.5194/acp-14-12479-2014
000172968 0247_ $$2ISSN$$a1680-7316
000172968 0247_ $$2ISSN$$a1680-7324
000172968 0247_ $$2WOS$$aWOS:000348536700007
000172968 0247_ $$2Handle$$a2128/9101
000172968 0247_ $$2altmetric$$aaltmetric:2938992
000172968 037__ $$aFZJ-2014-06398
000172968 082__ $$a550
000172968 1001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b0$$eCorresponding Author
000172968 245__ $$aStratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies
000172968 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000172968 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417447467_27072
000172968 3367_ $$2DataCite$$aOutput Types/Journal article
000172968 3367_ $$00$$2EndNote$$aJournal Article
000172968 3367_ $$2BibTeX$$aARTICLE
000172968 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172968 3367_ $$2DRIVER$$aarticle
000172968 520__ $$aChlorofluorocarbons (CFCs) play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their stratospheric loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer–tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11) and CF2Cl2 (CFC-12). We present estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 years for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the HIgh Resolution Dynamics Limb Sounder (HIRDLS), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We found a CFC-11/CFC-12 lifetime ratio of 0.47±0.08 and a CFC-12 lifetime of 112(96–133) years for ACE-FTS, a ratio of 0.46±0.07 and a lifetime of 113(97–134) years for HIRDLS, and a ratio of 0.46±0.08 and a lifetime of 114(98–136) years for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.46±0.04 and the CFC-12 lifetime estimate is 113(103–124) years. These results agree with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC) reassessment, which recommends lifetimes of 52(43–67) years and 102(88–122) years, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled model we found a CFC-11/CFC-12 lifetime ratio of 0.48±0.07 and a CFC-12 lifetime of 110(95–129) years, based on a 10-year perpetual run. Closely reproducing the satellite observations, the new model system will likely become a useful tool to assess the impact of advective transport, mixing, and photochemistry as well as climatological variability on the stratospheric lifetimes of long-lived tracers.
000172968 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000172968 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172968 7001_ $$0P:(DE-Juel1)144192$$aHoppe, Charlotte$$b1$$ufzj
000172968 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b2
000172968 7001_ $$0P:(DE-HGF)0$$aDutton, G. S.$$b3
000172968 7001_ $$0P:(DE-HGF)0$$aGille, J. C.$$b4
000172968 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, S.$$b5
000172968 7001_ $$0P:(DE-HGF)0$$aJones, A.$$b6
000172968 7001_ $$0P:(DE-Juel1)156465$$aMeyer, Catrin$$b7
000172968 7001_ $$0P:(DE-Juel1)129154$$aSpang, R.$$b8
000172968 7001_ $$0P:(DE-HGF)0$$aVolk, C. M.$$b9
000172968 7001_ $$0P:(DE-HGF)0$$aWalker, K. A.$$b10
000172968 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-14-12479-2014$$gVol. 14, no. 22, p. 12479 - 12497$$n22$$p12479 - 12497$$tAtmospheric chemistry and physics$$v14$$x1680-7324$$y2014
000172968 8564_ $$uhttps://juser.fz-juelich.de/record/172968/files/FZJ-2014-06398.pdf$$yOpenAccess
000172968 909CO $$ooai:juser.fz-juelich.de:172968$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000172968 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000172968 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172968 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172968 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000172968 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000172968 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172968 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172968 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172968 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172968 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172968 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172968 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172968 9141_ $$y2014
000172968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144192$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000172968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156465$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000172968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000172968 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vSupercomputing & Big Data$$x0
000172968 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000172968 920__ $$lyes
000172968 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000172968 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000172968 9801_ $$aFullTexts
000172968 980__ $$ajournal
000172968 980__ $$aVDB
000172968 980__ $$aUNRESTRICTED
000172968 980__ $$aFullTexts
000172968 980__ $$aI:(DE-Juel1)JSC-20090406
000172968 980__ $$aI:(DE-Juel1)IEK-7-20101013
000172968 981__ $$aI:(DE-Juel1)ICE-4-20101013
000172968 981__ $$aI:(DE-Juel1)IEK-7-20101013