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An angle dependent analysis of the planar Hall effect (PHE) in nanocrystalline single-domain

Co60Fe20B20 thin films is reported. In a combined experimental and theoretical study we show that the

transverse resistivity of the PHE is entirely driven by anisotropic magnetoresistance (AMR). Our results

for Co60Fe20B20 obtained from first principles theory in conjunction with a Boltzmann transport model

take into account the nanocrystallinity and the presence of 20 at.% boron. The ab initio AMR ratio of

0.12% agrees well with the experimental value of 0.22%. Furthermore, we experimentally demonstrate

that the anomalous Hall effect contributes negligibly in the present case.
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Electron transport effects employing the electronic spin
degree of freedom lie at the heart of spintronics and its
applications not only in information technology [1] but
more increasingly also in sensorics for biomedical pur-
poses, where the utmost sensitivity for detecting minute
magnetic stray fields is needed. The planar Hall effect
(PHE) and the anomalous Hall effect (AHE) as well as
tunneling magnetoresistance are promising phenomena for
realizing highly sensitive sensors. From a materials point
of view, nanocrystalline Co60Fe20B20 (CoFeB) attracts
growing attention since it combines large saturation mag-
netization with low coercivity [2,3], both favoring high
sensitivities.

PHE and AHE are both observed as a voltage transverse
to the applied current [4,5] in contrast to the anisotropic
magnetoresistance (AMR), which is measured in the lon-
gitudinal geometry. For PHE the magnetization M lies in
the plane spanned by the current density j ¼ jex and
the direction ey of the transverse voltage measurement,

and for AHE the component of M perpendicular to j
and ey matters. Although AMR has been known since

Thomson’s—later known as Lord Kelvin—observations
in 1856 [6], PHE was discovered only a century later in
polycrystalline permalloy [7]. More recently, PHE has also
been found in crystalline La2=3Fe1=3MnO3 [8] and as a very

large effect at low temperatures in the dilute magnetic
semiconductor (Ga,Mn)As [9]. The transverse resistance
�xy characterizing the PHE and the longitudinal resistivity

�xx denoting the AMR are given by [10]

�xy ¼ ð�k � �?Þ sin� cos�

�xx ¼ �?
�
1þ �k � �?

�?
cos2�

�
;

(1)

where �k (�?) is the resistivity along (perpendicular to) the
direction of the in-plane component of M, and � is the

angle enclosed by j and M. A transverse voltage arises
whenever the current is neither perpendicular nor parallel
to the magnetization. Even though the AMR is a subtle
spin-orbit effect, quantitatively reliable predictions from
first principles based on the density functional theory
(DFT) can be made [11,12].
In this Letter, we elucidate the role of AMR in the PHE

in nanocrystalline Co60Fe20B20 thin films experimentally
and by ab initio calculations. We measure AMR and PHE
in longitudinal and transverse four-probe transport experi-
ments. The single-domain behavior enforced by an ex-
change bias underlayer enables a direct comparison with
theory, and we calculate AMR and PHE signals by the
semiclassical Boltzmann approach using electronic struc-
ture calculated from first principles. In order to account for
the nanocrystallinity of our real CoFeB system, an angular
averaging of the conductivity tensor is performed. More
specifically, we first calculate Co0:75Fe0:25 (CoFe) without
boron as the magnetically equistoichiometric pendant to
Co60Fe20B20 and employ the virtual crystal approximation
(VCA) [13] to take the disorder of CoFe into account. In
the case of CoFeB we use a combined supercell plus VCA
approach. In view of the residual [110] texture that has
been found for CoFeB films [14], a possible contribution to
the transverse resistivity by anisotropic Berry-phase AHE
is also examined [15]. However, in our measurements it is
found to be negligible. Hence, we unambiguously show
that PHE has the same physical origin as AMR by verifi-
cation of the experimentally obtained transport data with a
first principles approach.
Our experimental system consists of magnetron-

sputtered CoFeB with nanocrystalline morphology. We
deposit films of 20 nm thickness in situ at room tempera-
ture (RT) on an antiferromagnetic Ir20Mn80 underlayer.
The exchange interaction between the antiferromagnet
and the ferromagnet induces a unidirectional exchange
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anisotropy with the exchange bias fieldHex oriented along
ey—perpendicular to the long axis of the Hall bar. We

measure the resistivities �xy and �xx in the typical Hall

geometry with a Hall contact size of 25� 25 �m2 at RT
by recording the transverse and longitudinal voltage sig-
nals, respectively. The external field H is applied in the
film plane and swept between�70 andþ70 mT, while the
sample is rotated around the film normal againstH in steps
of 5�. The rotation angle �H is measured with respect to
Hex. The resistivity �xx obtained is shown in Fig. 1(a) after
subtraction of a constant offset and yields the AMR, which
is accompanied by a transverse resistivity �xy, the PHE,

displayed in Fig. 1(b) after subtraction of a geometry-
related offset.

In our experiments we control the direction �H of the
external field, which does not necessarily coincide with the
direction of M. In particular, at small magnetic fields and
in the presence of magnetic anisotropy we have to intro-
duce the angle � between H and M, which can be derived
analytically from the Stoner-Wohlfarth model based on
coherent single-domain behavior. Minimizing the free-
energy density E ¼ �MH cosð�Þ �MHex cosð�H � �Þ
comprising Zeeman and exchange bias contributions, we
obtain

� ¼ arctan

�
Hex sin�H

H þHex cos�H

�
: (2)

In our case Hex is perpendicular to j and we set in
Eqs. (1) � ¼ 90� þ ���H to obtain expressions that
can be fitted to the experimental �xx and �xy data in

order to determine the intrinsic AMR ratio ½ð�k �
�?Þ=�?�expt � ð��=�Þexpt.
Least-squares fits of Eqs. (1) using Eq. (2) to the AMR

and PHE data in Figs. 1(a) and 1(b) are displayed in
Figs. 1(c) and 1(d). We find good agreement for all applied
fields H. Note that the total variations of both �xx and �xy

amount to the same value 5:0� 10�8 � cm as expected
from Eqs. (1). Therefore, our data confirm the magnetic
single-domain behavior of the CoFeB film. The fits con-
sistently yield an exchange bias field Hex ¼ 5:2 mT and a
RT AMR ratio of ð��=�Þexpt ¼ 0:22%.

We also observe a strong temperature dependence of the
PHE signal, which we investigate in the temperature range
between RT and 10 K for two pronounced field directions:
For �H ¼ 45� we observe typical AMR hysteresis loops
[Fig. 2(a)], and for �H ¼ 90� the curves assume the
characteristic shape of hysteretic Hall loops [Fig. 2(b)].
The PHE curves for�H ¼ 45� are asymmetric and shifted
byH� on the field axis due to the exchange bias effect. The
shift at RTof 1.7 mT is less thanHex ¼ 5:2 mT determined
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FIG. 1 (color online). Experimental resistivities �xx (a) and
�xy (b) measured at RT as a function of field magnitude H and

direction �H. Corresponding fits using Eqs. (1) are shown in (c)
and (d) and yield a RT AMR ratio of ð��=�Þexpt ¼ 0:22%.
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FIG. 2 (color online). Temperature dependence of the mea-
sured PHE signal Uxy for (a) �H ¼ 45� and (b) �H ¼ 90�. The
curves are vertically offset for clarity and the �Uxy values are

given for each temperature. Insets: Evolution with temperature
of the field shift H� and coercivity Hc, respectively, together
with the field-dependent amplitude ��xy around zero field.
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from the transport data in Fig. 1 since the field is applied at
an angle with respect to Hex. The curves for �H ¼ 90�
represent hard-axis loops and are completely symmetric
with respect to H ¼ 0. The coercive field Hc of the hyste-
retic Hall loops evolves very similar to the exchange bias
shift of the�H ¼ 45� data [lower (red) curves in the insets
of Fig. 2]. The temperature dependence of the PHE signal
variation around zero applied field ��xy is also depicted

in the insets of Fig. 2. Interestingly, the field shift H�
increases at lower temperatures, only making it more ob-
vious that the PHE signal �xy is actually a manifestation of

the AMR. A further point of evidence for the AMR nature
of �xy is that the field-dependent amplitude ��xy around

zero field scales negatively with increasing temperature,
unlike AHE does [5].

We performed DFT calculations of the electronic struc-
ture of CoFe and CoFeB using the full-potential linearized
augmented plane wave (FLAPW) code FLEUR [16] and the
generalized gradient approximation. For the theoretical
description of disordered bcc CoFe we make use of the
VCA [13]. Using a 6.8 hartree plane-wave cutoff and a
20� 20� 20 k mesh, the computed theoretical lattice
constant for Co0:75Fe0:25 is 0.282 nm and the average spin
magnetic moment is 2:02�B, in very good agreement with
calculations based on the coherent potential approximation
[17]. Within the FLAPW method VCA is only applicable
to binary alloys with both atomic species adjacent in the
periodic table. Thus, we employ a combined supercell plus
VCA approach for Co60Fe20B20. Experimentally, it has
been found that boron predominantly fills interstitial sites
in bcc CoFeB alloys rather than substituting for transition
metal sites, and that the bcc CoFe lattice does not expand
upon addition of boron [18–20]. Hence, we set up a bcc
supercell consisting of 4 VCA CoFe atoms into which we
included one boron atom at an interstitial site. In units of
the lattice constant specified above, the Cartesian coordi-
nates of the VCA atoms are ð0; 0; 0Þ, ð12 ; 12 ; 14Þ, ð0; 0; 12Þ,ð12 ; 12 ; 34Þ. The boron atom is located at ð14 ; 12 ; 0Þ. Since an

angular averaging of the resistivity tensor will be per-
formed later, it is sufficient for the purposes of this study
to take only this single configuration into account, instead
of performing a configurational averaging. The calculated
average spin magnetic moment per magnetic VCA atom of
1:27�B is in good agreement with the value of 1:1�B,
which we measure experimentally for Co60Fe20B20.

In order to obtain the AMR ratio, ð��=�Þtheor, from first
principles, we compute the conductivity tensor �, which
within the Boltzmann theory is given by

� ¼ �e2

@
2VN

X
kn

ðrk�knÞ � ðrk�knÞ�ð�kn � �FÞ; (3)

with N as the number of k points and V as the unit-cell
volume. � denotes the relaxation time (which we assume to
be k independent), �kn is the single particle energy of band
n at k point k, and �F is the Fermi energy. The group

velocity associated with the electron in band n is vkn ¼
ð1=@Þrk�kn. Spin-orbit interaction causes a dependence
of the band energies �kn—and consequently also of the
conductivity tensor �—on the direction of the magnetiza-
tion M leading to AMR. The � function in Eq. (3) is
approximated by a Gaussian of width �

ðNVÞ1=3 jrkn�knj. In
order to compute Eq. (3) computationally efficiently we
use Wannier interpolation [21,22].
Equation (3) is evaluated for 26 different magnetization

directions M̂ ¼ ðsin	 cos’; sin	 sin’; cos	Þ in both CoFe

and CoFeB. The resistivity tensor �ðM̂Þ ¼ ��1ðM̂Þ is
expanded in terms of the directional cosines of the mag-
netization [23]. We found that in order to fit our data it is
sufficient to cut the expansion after the 4th order term. The
longitudinal resistivity along the unit direction ê
 (
 ¼
r; 	; ’) in spherical coordinates is given by the projection

�
 ðM̂Þ ¼ ê
�ðM̂Þê
 . The two resulting M̂-dependent

AMR ratios are given by ½�rðM̂Þ � �	ðM̂Þ�=�rðM̂Þ and

½�rðM̂Þ � �’ðM̂Þ�=�rðM̂Þ. The angular dependence of

the AMR ratios in ordered bcc CoFe displays cubic sym-
metry. In the case of the CoFeB supercell, the inclusion
of boron violates the cubic symmetry and therefore the
resistivity exhibits an additional geometrical anisotropy in
addition to the anisotropy due to the spin-orbit interaction.
However, this geometrical anisotropy may be eliminated
easily by defining a new effective resistivity tensor,
which is given by the sum of resistivity tensors rotated
about the [111] direction. Consider, for example, the ma-
trix elements �xxðêxÞ, �yyðêyÞ, and �zzðêzÞ. From these the

matrix element ��xxðêxÞ ¼ ½�xxðêxÞ þ �yyðêyÞ þ �zzðêzÞ�=3
is constructed, and ��yyðêyÞ ¼ ��zzðêzÞ ¼ ��xxðêxÞ. The

resistivities for the other matrix elements and general
magnetization directions are obtained analogously.
The resulting AMR ratios of the effectively cubic

CoFeB system are shown together with those of CoFe for
	 ¼ 90� and 	 ¼ 45� in Figs. 3(a) and 3(b), respectively.
The angular dependence of the AMR ratios is rather strong,
as expected for single crystals [24,25]. The main effect
of adding boron is a reduction of the AMR ratios while
qualitatively the angular dependence of the AMR ratios is
similar in the CoFe and CoFeB systems. The strong angu-
lar dependence clearly shows that calculations for many
magnetic configurations have to be performed in order to
calculate the polycrystalline average reliably.
In order to describe a nanocrystalline material in the

absence of texture we average over all possible grain
orientations. Then the resistivities �k and �? are related

to the angular averages of the projected resistivities

h�rðM̂Þi and h�	ðM̂Þ þ �’ðM̂Þi=2, respectively. This pro-
cedure yields for VCA in CoFe an AMR ratio of
ð��=�Þtheor ¼ 0:19%. For CoFeB a smaller AMR ratio
of 0.12% is obtained, which is in good agreement with
the experimentally determined value of ð��=�Þexpt ¼
0:22% considering the approximations made.
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Since a residual [110] texture has been found in CoFeB
films [14] that can give rise to a magnetization component
perpendicular to the film, we also examine the possibility
that the transverse signals shown in Figs. 1 and 2 may
partly be governed by the anomalous Hall effect [26]. We
have performed a computational assessment of the intrinsic
AHE based on the topological Berry curvature of Bloch
electrons in single-crystalline bcc Co0:75Fe0:25 and also in
single-crystalline Co60Fe20B20. We obtain—for the exag-
gerated case of a fully out-of-plane magnetized sample—
anomalous Hall resistivities of �AHE

CoFe � 2:0� 10�7 � cm
and �AHE

CoFeB � 3:0� 10�7 � cm, which both are 1 order of

magnitude larger than the measured PHE signal shown in
Figs. 1 and 2. The anisotropy in the computed Berry-phase
AHE, dominant over other impurity and disorder driven
contributions to the AHE anisotropy [15], gives a field-
dependent amplitude of ��AHE

CoFe � 1:3� 10�8 � cm. In a

controlled experiment, we apply a saturating magnetic
field normal to the film plane of the Hall bar device, finding
that in the case of full saturation the measured AHE signal
merely yields 1=10 of the PHE signal. This indicates that
the role of finite disorder present in a CoFeB sample is to
significantly suppress the intrinsic AHE, and, correspond-
ingly, its anisotropy, precluding any significant contribu-
tion to the measured field-dependent PHE signal.

In conclusion, we have elucidated in a joint experimen-
tal and computational approach that PHE in CoFeB
originates from AMR without contributions from AHE.
Experimentally this is exhibited by an angle and

temperature dependent investigation of the transverse and
longitudinal signal. Using band structure calculations and
semiclassical Boltzmann transport theory to calculate
AMR, we obtain good agreement with the experimental
AMR ratio of nanocrystalline CoFeB. The maximal AHE
measured in CoFeB is significantly smaller than the an-
isotropy of the Berry-phase AHE calculated for CoFe.
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FIG. 3 (color online). Calculated M̂-dependent AMR ratios
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