000173008 001__ 173008 000173008 005__ 20240610120435.0 000173008 0247_ $$2doi$$a10.1016/j.jallcom.2014.02.109 000173008 0247_ $$2WOS$$aWOS:000333766500021 000173008 037__ $$aFZJ-2014-06422 000173008 041__ $$aEnglish 000173008 082__ $$a670 000173008 1001_ $$0P:(DE-Juel1)130672$$aGrushko, Benjamin$$b0$$eCorresponding Author$$ufzj 000173008 245__ $$aA study of the Al-Pd-Pt alloy system 000173008 260__ $$aLausanne$$bElsevier$$c2014 000173008 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417795735_21917 000173008 3367_ $$2DataCite$$aOutput Types/Journal article 000173008 3367_ $$00$$2EndNote$$aJournal Article 000173008 3367_ $$2BibTeX$$aARTICLE 000173008 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000173008 3367_ $$2DRIVER$$aarticle 000173008 520__ $$aThe constitution of the Al−Pd−Pt alloy system was studied above 35 at.% Al at 700, 780, 900 and 1100 °C. The experiments revealed the formation of wide extensions of the binary Al−Pd and Al−Pt phases but no ternary phases. Continuous regions are probably formed between the isostructural phases Al4TM, Al21TM8, high-temperature AlTM, low-temperature AlTM and Al3TM5 (TM = Pd or Pt). The continuity between the Al3TM2 phases was revealed at 900 °C, while at 1100 °C the regions mutually extended from Al3Ni2 and Al3Pd2 are separated by the ternary extension of Al2Pt. The latter phase was found to dissolve up to 24 at.% Pd, which resulted in a sharp decrease of its Al concentration. The Al−Pd ε-phase was found to extend up to 18 at.% Pt at practically constant Al, while the Al−Pt ξ-phase was found to extend up to 7 at.% Pd. 000173008 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0 000173008 7001_ $$0P:(DE-Juel1)156590$$aKapush, Denys$$b1$$ufzj 000173008 7001_ $$0P:(DE-HGF)0$$aSamuha, S.$$b2 000173008 7001_ $$0P:(DE-HGF)0$$aMeshi, L.$$b3 000173008 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2014.02.109$$p125 - 129$$tJournal of alloys and compounds$$v600$$x0925-8388$$y2014 000173008 8564_ $$uhttps://juser.fz-juelich.de/record/173008/files/FZJ-2014-06422.pdf$$yRestricted 000173008 909CO $$ooai:juser.fz-juelich.de:173008$$pVDB 000173008 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130672$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000173008 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156590$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000173008 9132_ $$0G:(DE-HGF)POF3-424$$1G:(DE-HGF)POF3-420$$2G:(DE-HGF)POF3-400$$aDE-HGF$$bForschungsbereich Luftfahrt, Raumfahrt und Verkehr$$lRaumfahrt$$vResearch under Space Conditions$$x0 000173008 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0 000173008 9141_ $$y2014 000173008 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000173008 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000173008 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000173008 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000173008 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000173008 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000173008 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000173008 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000173008 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000173008 920__ $$lyes 000173008 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0 000173008 980__ $$ajournal 000173008 980__ $$aVDB 000173008 980__ $$aI:(DE-Juel1)PGI-5-20110106 000173008 980__ $$aUNRESTRICTED 000173008 981__ $$aI:(DE-Juel1)ER-C-1-20170209