001     173008
005     20240610120435.0
024 7 _ |a 10.1016/j.jallcom.2014.02.109
|2 doi
024 7 _ |a WOS:000333766500021
|2 WOS
037 _ _ |a FZJ-2014-06422
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Grushko, Benjamin
|0 P:(DE-Juel1)130672
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a A study of the Al-Pd-Pt alloy system
260 _ _ |a Lausanne
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1417795735_21917
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The constitution of the Al−Pd−Pt alloy system was studied above 35 at.% Al at 700, 780, 900 and 1100 °C. The experiments revealed the formation of wide extensions of the binary Al−Pd and Al−Pt phases but no ternary phases. Continuous regions are probably formed between the isostructural phases Al4TM, Al21TM8, high-temperature AlTM, low-temperature AlTM and Al3TM5 (TM = Pd or Pt). The continuity between the Al3TM2 phases was revealed at 900 °C, while at 1100 °C the regions mutually extended from Al3Ni2 and Al3Pd2 are separated by the ternary extension of Al2Pt. The latter phase was found to dissolve up to 24 at.% Pd, which resulted in a sharp decrease of its Al concentration. The Al−Pd ε-phase was found to extend up to 18 at.% Pt at practically constant Al, while the Al−Pt ξ-phase was found to extend up to 7 at.% Pd.
536 _ _ |a 424 - Exploratory materials and phenomena (POF2-424)
|0 G:(DE-HGF)POF2-424
|c POF2-424
|f POF II
|x 0
700 1 _ |a Kapush, Denys
|0 P:(DE-Juel1)156590
|b 1
|u fzj
700 1 _ |a Samuha, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Meshi, L.
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.jallcom.2014.02.109
|0 PERI:(DE-600)2012675-X
|p 125 - 129
|t Journal of alloys and compounds
|v 600
|y 2014
|x 0925-8388
856 4 _ |u https://juser.fz-juelich.de/record/173008/files/FZJ-2014-06422.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:173008
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130672
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156590
913 2 _ |a DE-HGF
|b Forschungsbereich Luftfahrt, Raumfahrt und Verkehr
|l Raumfahrt
|1 G:(DE-HGF)POF3-420
|0 G:(DE-HGF)POF3-424
|2 G:(DE-HGF)POF3-400
|v Research under Space Conditions
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21