000173011 001__ 173011
000173011 005__ 20220930130035.0
000173011 0247_ $$2doi$$a10.1007/s00253-014-6109-5
000173011 0247_ $$2ISSN$$a0171-1741
000173011 0247_ $$2ISSN$$a0175-7598
000173011 0247_ $$2ISSN$$a0340-2118
000173011 0247_ $$2ISSN$$a1432-0614
000173011 0247_ $$2WOS$$aWOS:000348770900021
000173011 037__ $$aFZJ-2014-06425
000173011 082__ $$a570
000173011 1001_ $$0P:(DE-Juel1)143618$$aVogt, Michael$$b0
000173011 245__ $$aThe contest for precursors: channelling L-isoleucin Synthesis in Corynebacterium glutamicum without byproduct formation
000173011 260__ $$aBerlin$$bSpringer$$c2015
000173011 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457696153_314
000173011 3367_ $$2DataCite$$aOutput Types/Journal article
000173011 3367_ $$00$$2EndNote$$aJournal Article
000173011 3367_ $$2BibTeX$$aARTICLE
000173011 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173011 3367_ $$2DRIVER$$aarticle
000173011 520__ $$al-Isoleucine is an essential amino acid, which is required as a pharma product and feed additive. Its synthesis shares initial steps with that of l-lysine and l-threonine, and four enzymes of l-isoleucine synthesis have an enlarged substrate specificity involved also in l-valine and l-leucine synthesis. As a consequence, constructing a strain specifically overproducing l-isoleucine without byproduct formation is a challenge. Here, we analyze for consequences of plasmid-encoded genes in Corynebacterium glutamicum MH20-22B on l-isoleucine formation, but still obtain substantial accumulation of byproducts. In a different approach, we introduce point mutations into the genome of MH20-22B to remove the feedback control of homoserine dehydrogenase, hom, and threonine dehydratase, ilvA, and we assay sets of genomic promoter mutations to increase hom and ilvA expression as well as to reduce dapA expression, the latter gene encoding the dihydrodipicolinate synthase. The promoter mutations are mirrored in the resulting differential protein levels determined by a targeted LC-MS/MS approach for the three key enzymes. The best combination of genomic mutations was found in strain K2P55, where 53 mM l-isoleucine could be obtained. Whereas in fed-batch fermentations with the plasmid-based strain, 94 mM l-isoleucine with l-lysine as byproduct was formed; with the plasmid-less strain K2P55, 109 mM l-isoleucine accumulated with no substantial byproduct formation. The specific molar yield with the latter strain was 0.188 mol l-isoleucine (mol glucose)−1 which characterizes it as one of the best l-isoleucine producers available and which does not contain plasmids.
000173011 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000173011 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173011 7001_ $$0P:(DE-Juel1)128973$$aKrumbach, Karin$$b1
000173011 7001_ $$0P:(DE-HGF)0$$aBang, Won-Gi$$b2
000173011 7001_ $$0P:(DE-Juel1)128998$$avan Ooyen, Jan$$b3
000173011 7001_ $$0P:(DE-Juel1)129050$$aNoack, Stephan$$b4
000173011 7001_ $$0P:(DE-Juel1)129034$$aKlein, Bianca$$b5
000173011 7001_ $$0P:(DE-Juel1)128943$$aBott, Michael$$b6
000173011 7001_ $$0P:(DE-Juel1)128958$$aEggeling, Lothar$$b7$$eCorresponding Author
000173011 773__ $$0PERI:(DE-600)1464336-4$$a10.1007/s00253-014-6109-5$$n2$$p791-800$$tApplied microbiology and biotechnology$$v99$$x1432-0614$$y2015
000173011 8564_ $$uhttps://juser.fz-juelich.de/record/173011/files/FZJ-2014-06425.pdf$$yRestricted
000173011 8767_ $$92015-02-13$$d2015-02-13$$eColour charges$$jZahlung erfolgt$$lKK: Heinen
000173011 909CO $$ooai:juser.fz-juelich.de:173011$$pOpenAPC$$pVDB$$popenCost
000173011 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173011 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173011 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173011 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173011 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173011 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173011 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173011 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000173011 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000173011 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000173011 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000173011 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000173011 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000173011 9141_ $$y2014
000173011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143618$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128973$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129050$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000173011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129034$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000173011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000173011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128958$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000173011 9130_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000173011 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000173011 920__ $$lyes
000173011 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000173011 980__ $$ajournal
000173011 980__ $$aVDB
000173011 980__ $$aI:(DE-Juel1)IBG-1-20101118
000173011 980__ $$aUNRESTRICTED
000173011 980__ $$aAPC