001     173011
005     20220930130035.0
024 7 _ |2 doi
|a 10.1007/s00253-014-6109-5
024 7 _ |2 ISSN
|a 0171-1741
024 7 _ |2 ISSN
|a 0175-7598
024 7 _ |2 ISSN
|a 0340-2118
024 7 _ |2 ISSN
|a 1432-0614
024 7 _ |2 WOS
|a WOS:000348770900021
037 _ _ |a FZJ-2014-06425
082 _ _ |a 570
100 1 _ |0 P:(DE-Juel1)143618
|a Vogt, Michael
|b 0
245 _ _ |a The contest for precursors: channelling L-isoleucin Synthesis in Corynebacterium glutamicum without byproduct formation
260 _ _ |a Berlin
|b Springer
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1457696153_314
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a l-Isoleucine is an essential amino acid, which is required as a pharma product and feed additive. Its synthesis shares initial steps with that of l-lysine and l-threonine, and four enzymes of l-isoleucine synthesis have an enlarged substrate specificity involved also in l-valine and l-leucine synthesis. As a consequence, constructing a strain specifically overproducing l-isoleucine without byproduct formation is a challenge. Here, we analyze for consequences of plasmid-encoded genes in Corynebacterium glutamicum MH20-22B on l-isoleucine formation, but still obtain substantial accumulation of byproducts. In a different approach, we introduce point mutations into the genome of MH20-22B to remove the feedback control of homoserine dehydrogenase, hom, and threonine dehydratase, ilvA, and we assay sets of genomic promoter mutations to increase hom and ilvA expression as well as to reduce dapA expression, the latter gene encoding the dihydrodipicolinate synthase. The promoter mutations are mirrored in the resulting differential protein levels determined by a targeted LC-MS/MS approach for the three key enzymes. The best combination of genomic mutations was found in strain K2P55, where 53 mM l-isoleucine could be obtained. Whereas in fed-batch fermentations with the plasmid-based strain, 94 mM l-isoleucine with l-lysine as byproduct was formed; with the plasmid-less strain K2P55, 109 mM l-isoleucine accumulated with no substantial byproduct formation. The specific molar yield with the latter strain was 0.188 mol l-isoleucine (mol glucose)−1 which characterizes it as one of the best l-isoleucine producers available and which does not contain plasmids.
536 _ _ |0 G:(DE-HGF)POF3-581
|a 581 - Biotechnology (POF3-581)
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)128973
|a Krumbach, Karin
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Bang, Won-Gi
|b 2
700 1 _ |0 P:(DE-Juel1)128998
|a van Ooyen, Jan
|b 3
700 1 _ |0 P:(DE-Juel1)129050
|a Noack, Stephan
|b 4
700 1 _ |0 P:(DE-Juel1)129034
|a Klein, Bianca
|b 5
700 1 _ |0 P:(DE-Juel1)128943
|a Bott, Michael
|b 6
700 1 _ |0 P:(DE-Juel1)128958
|a Eggeling, Lothar
|b 7
|e Corresponding Author
773 _ _ |0 PERI:(DE-600)1464336-4
|a 10.1007/s00253-014-6109-5
|n 2
|p 791-800
|t Applied microbiology and biotechnology
|v 99
|x 1432-0614
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/173011/files/FZJ-2014-06425.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:173011
|p VDB
|p OpenAPC
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143618
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128973
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129050
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129034
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128943
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128958
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-899
|1 G:(DE-HGF)POF2-890
|2 G:(DE-HGF)POF2-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
913 1 _ |0 G:(DE-HGF)POF3-581
|1 G:(DE-HGF)POF3-580
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21