000173018 001__ 173018
000173018 005__ 20240610120436.0
000173018 0247_ $$2doi$$a10.1017/S1431927614000518
000173018 0247_ $$2WOS$$aWOS:000339158700014
000173018 037__ $$aFZJ-2014-06431
000173018 041__ $$aEnglish
000173018 082__ $$a570
000173018 1001_ $$0P:(DE-HGF)0$$aPark, D.$$b0$$eCorresponding Author
000173018 245__ $$aStudies of Local Structural Disortions in Strained Ultrathin BaTiO3 Films sing Scanning Transmission Electron Microscopy
000173018 260__ $$aNew York, NY$$bCambridge University Press$$c2014
000173018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417707360_21919
000173018 3367_ $$2DataCite$$aOutput Types/Journal article
000173018 3367_ $$00$$2EndNote$$aJournal Article
000173018 3367_ $$2BibTeX$$aARTICLE
000173018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173018 3367_ $$2DRIVER$$aarticle
000173018 520__ $$aUltrathin ferroelectric heterostructures (SrTiO3/BaTiO3/BaRuO3/SrRuO3) were studied by scanning transmission electron microscopy (STEM) in terms of structural distortions and atomic displacements. The TiO2-termination at the top interface of the BaTiO3 layer was changed into a BaO-termination by adding an additional BaRuO3 layer. High-angle annular dark-field (HAADF) imaging by aberration-corrected STEM revealed that an artificially introduced BaO-termination can be achieved by this interface engineering. By using fast sequential imaging and frame-by-frame drift correction, the effect of the specimen drift was significantly reduced and the signal-to-noise ratio of the HAADF images was improved. Thus, a quantitative analysis of the HAADF images was feasible, and an in-plane and out-of-plane lattice spacing of the BaTiO3 layer of 3.90 and 4.22 Å were determined. A 25 pm shift of the Ti columns from the center of the unit cell of BaTiO3 along the c-axis was observed. By spatially resolved electron energy-loss spectroscopy studies, a reduction of the crystal field splitting (CFS, ΔL3=1.93 eV) and an asymmetric broadening of the e g peak were observed in the BaTiO3 film. These results verify the presence of a ferroelectric polarization in the ultrathin BaTiO3 film.
000173018 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000173018 7001_ $$0P:(DE-Juel1)140552$$aHerpers, Anja$$b1$$ufzj
000173018 7001_ $$0P:(DE-HGF)0$$aMenke, Tobias$$b2
000173018 7001_ $$0P:(DE-Juel1)157790$$aHeidelmann, Markus$$b3$$ufzj
000173018 7001_ $$0P:(DE-Juel1)130723$$aHouben, Lothar$$b4$$ufzj
000173018 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b5$$ufzj
000173018 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6$$ufzj
000173018 773__ $$0PERI:(DE-600)1481716-0$$a10.1017/S1431927614000518$$p740 -747$$tMicroscopy and microanalysis$$v20$$x1431-9276$$y2014
000173018 8564_ $$uhttps://juser.fz-juelich.de/record/173018/files/FZJ-2014-06431.pdf$$yRestricted
000173018 909CO $$ooai:juser.fz-juelich.de:173018$$pVDB
000173018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140552$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157790$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000173018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130723$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000173018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000173018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000173018 9132_ $$0G:(DE-HGF)POF3-424$$1G:(DE-HGF)POF3-420$$2G:(DE-HGF)POF3-400$$aDE-HGF$$bForschungsbereich Luftfahrt, Raumfahrt und Verkehr$$lRaumfahrt$$vResearch under Space Conditions$$x0
000173018 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000173018 9141_ $$y2014
000173018 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173018 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173018 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173018 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173018 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173018 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173018 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173018 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000173018 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000173018 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000173018 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000173018 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000173018 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173018 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000173018 920__ $$lyes
000173018 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000173018 980__ $$ajournal
000173018 980__ $$aVDB
000173018 980__ $$aI:(DE-Juel1)PGI-5-20110106
000173018 980__ $$aUNRESTRICTED
000173018 981__ $$aI:(DE-Juel1)ER-C-1-20170209