001     173062
005     20240610120446.0
024 7 _ |a 10.1002/cctc.201400066
|2 doi
024 7 _ |a WOS:000340573200027
|2 WOS
024 7 _ |a altmetric:2443235
|2 altmetric
037 _ _ |a FZJ-2014-06475
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Hocking, Rosalie K.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Formation of a Nanoparticulate Birnessite - Like Phase in Purported Molecular Water Oxidation Catalyst Systems
260 _ _ |a Weinheim
|c 2014
|b WILEY-VCH Verlag
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1417703031_21918
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The fate of [MnIII/IV2(μ-O)2(terpy)2(H2O)2]3+ (1) under conditions typically applied to test its ability to catalyze water oxidation was studied by X-ray absorption spectroscopy and UV/Vis spectrophotometry by using [MnIII/IV2(μ-O)2(bipy)4]3+ (2) and Mn2+ as controls (terpy=2,2′:6′,2“-terpyridine, bipy=2,2′-bipyridine). The sample matrix, pH and choice of oxidizing agent were found to have a significant effect on the species formed under catalytic conditions. At low range pH values (4–6), homogeneous catalysis testing in oxone implied that 1 remains intact, whereas in clay intercalate there is strong evidence that 1 breaks down to a birnessite-like phase. In homogeneous solutions at higher pH, the results are consistent with the same birnessite-like structure identified in the clay intercalate. The use of the molecular complexes, as a source of manganese instead of simple MnII salts, was found to have the effect of slowing down oxide formation and particle aggregation in solution. The original analytical results that implied the systems are molecular are discussed in the context of these new observations.
536 _ _ |a 424 - Exploratory materials and phenomena (POF2-424)
|0 G:(DE-HGF)POF2-424
|c POF2-424
|f POF II
|x 0
700 1 _ |a Malaeb, Rafah
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gates, Will P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Patti, Antonio F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chang, Lan-Yun
|0 P:(DE-Juel1)159156
|b 4
|u fzj
700 1 _ |a Devlin, Glyn
|0 P:(DE-HGF)0
|b 5
700 1 _ |a MacFarlane, Douglas R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Spiccia, Leone
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1002/cctc.201400066
|0 PERI:(DE-600)2501161-3
|p 2028 - 2038
|t ChemCatChem
|v 6
|y 2014
|x 1867-3880
856 4 _ |u https://juser.fz-juelich.de/record/173062/files/FZJ-2014-06475.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:173062
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159156
913 2 _ |a DE-HGF
|b Forschungsbereich Luftfahrt, Raumfahrt und Verkehr
|l Raumfahrt
|1 G:(DE-HGF)POF3-420
|0 G:(DE-HGF)POF3-424
|2 G:(DE-HGF)POF3-400
|v Research under Space Conditions
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21