000173063 001__ 173063
000173063 005__ 20240610120447.0
000173063 0247_ $$2doi$$a10.1016/j.carbon.2014.05.006
000173063 0247_ $$2WOS$$aWOS:000337985300053
000173063 0247_ $$2altmetric$$aaltmetric:2451782
000173063 037__ $$aFZJ-2014-06476
000173063 041__ $$aEnglish
000173063 082__ $$a540
000173063 1001_ $$0P:(DE-HGF)0$$aGontard, Lionel C.$$b0$$eCorresponding Author
000173063 245__ $$aImpregnation of carbon black for the examination of colloids using TEM
000173063 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000173063 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417703100_21917
000173063 3367_ $$2DataCite$$aOutput Types/Journal article
000173063 3367_ $$00$$2EndNote$$aJournal Article
000173063 3367_ $$2BibTeX$$aARTICLE
000173063 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173063 3367_ $$2DRIVER$$aarticle
000173063 500__ $$aJournal homepage: www.elsevier.com/locate/carbon
000173063 520__ $$aNanoparticles are frequently synthesised as colloids, dispersed in solvents such as water, hexane or ethanol. For their characterisation by transmission electron microscopy (TEM), a drop of colloid is typically deposited on a carbon support and the solvent allowed to evaporate. However, this method of supporting the nanoparticles reduces the visibility of fine atomic details, particularly for carbonaceous species, due to interference from the 2-dimensional carbon support at most viewing angles. We propose here the impregnation of a 3 dimensional carbon black matrix that has been previously deposited on a carbon film as an alternative means of supporting colloidal nanoparticles, and show examples of the application of this method to advanced TEM techniques in the analysis of monometallic, core@shell and hybrid nanoparticles with carbon-based shells.
000173063 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000173063 7001_ $$0P:(DE-HGF)0$$aKnappett, Benjamin R.$$b1
000173063 7001_ $$0P:(DE-HGF)0$$aWheatley, Andrew E. H.$$b2
000173063 7001_ $$0P:(DE-Juel1)159156$$aChang, Lan-Yun$$b3$$ufzj
000173063 7001_ $$0P:(DE-HGF)0$$aFernandez, Asuncion$$b4
000173063 773__ $$0PERI:(DE-600)2014715-6$$a10.1016/j.carbon.2014.05.006$$p464 - 468$$tCarbon$$v76$$x0008-6223$$y2014
000173063 8564_ $$uhttps://juser.fz-juelich.de/record/173063/files/FZJ-2014-06476.pdf$$yRestricted
000173063 909CO $$ooai:juser.fz-juelich.de:173063$$pVDB
000173063 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159156$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000173063 9132_ $$0G:(DE-HGF)POF3-424$$1G:(DE-HGF)POF3-420$$2G:(DE-HGF)POF3-400$$aDE-HGF$$bForschungsbereich Luftfahrt, Raumfahrt und Verkehr$$lRaumfahrt$$vResearch under Space Conditions$$x0
000173063 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000173063 9141_ $$y2014
000173063 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173063 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173063 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173063 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173063 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173063 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173063 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173063 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173063 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000173063 920__ $$lyes
000173063 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000173063 980__ $$ajournal
000173063 980__ $$aVDB
000173063 980__ $$aI:(DE-Juel1)PGI-5-20110106
000173063 980__ $$aUNRESTRICTED
000173063 981__ $$aI:(DE-Juel1)ER-C-1-20170209