000173098 001__ 173098
000173098 005__ 20240708133635.0
000173098 037__ $$aFZJ-2014-06511
000173098 1001_ $$0P:(DE-Juel1)145479$$aHoffmann, Andre$$b0$$eCorresponding Author$$ufzj
000173098 1112_ $$aE-MRS Spring Meeting$$cLille$$d2014-05-26 - 2014-05-30$$wFrance
000173098 245__ $$aTextured tandem solar cells with spectrally selective multilayer intermediate reflectors
000173098 260__ $$c2014
000173098 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1417705810_21920$$xOther
000173098 3367_ $$033$$2EndNote$$aConference Paper
000173098 3367_ $$2DataCite$$aOther
000173098 3367_ $$2ORCID$$aLECTURE_SPEECH
000173098 3367_ $$2DRIVER$$aconferenceObject
000173098 3367_ $$2BibTeX$$aINPROCEEDINGS
000173098 520__ $$aTandem thin-film silicon solar cells consist of an amorphous silicon top cell and a microcrystalline silicon bottom cell which are stacked and connected in series. To match the photocurrents of the top cell and the bottom cell, a proper light management is essential. To this end, intermediate reflectors are applied between the top and the bottom solar cells. State-of-the-art single-layer intermediate reflectors are made of low refractive index materials but show poor spectral selectivity and cause parasitic reflection losses in the external quantum efficiency of the bottom cell. We report on the design of a multilayer intermediate reflector based on aluminum doped zinc oxide and microcrystalline silicon oxide with a spectrally selective reflectance. Rigorous optical simulations are used to examine the intermediate reflector even in textured thin-film solar cells. In a subsequent step, this intermediate reflector was successfully integrated into state-of-the art tandem solar cells deposited on a rough front contact. In agreement to simulation, an improved spectral selective reflectance of incident light is realized which increases the total charge carrier generation of the tandem solar cell by 0.7 mA/cm² in comparison to the state-of-the-art single-layer intermediate reflector.
000173098 536__ $$0G:(DE-HGF)POF2-111$$a111 - Thin Film Photovoltaics (POF2-111)$$cPOF2-111$$fPOF II$$x0
000173098 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000173098 7001_ $$0P:(DE-Juel1)130282$$aPaetzold, Ulrich W.$$b1$$ufzj
000173098 7001_ $$0P:(DE-Juel1)136680$$aZhang, Chao$$b2$$ufzj
000173098 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b3$$ufzj
000173098 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b4$$ufzj
000173098 773__ $$y2014
000173098 909CO $$ooai:juser.fz-juelich.de:173098$$pVDB
000173098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145479$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130282$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136680$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000173098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000173098 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000173098 9131_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000173098 9141_ $$y2014
000173098 920__ $$lyes
000173098 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000173098 980__ $$aconf
000173098 980__ $$aVDB
000173098 980__ $$aI:(DE-Juel1)IEK-5-20101013
000173098 980__ $$aUNRESTRICTED
000173098 981__ $$aI:(DE-Juel1)IMD-3-20101013