001     173098
005     20240708133635.0
037 _ _ |a FZJ-2014-06511
100 1 _ |a Hoffmann, Andre
|0 P:(DE-Juel1)145479
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a E-MRS Spring Meeting
|c Lille
|d 2014-05-26 - 2014-05-30
|w France
245 _ _ |a Textured tandem solar cells with spectrally selective multilayer intermediate reflectors
260 _ _ |c 2014
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1417705810_21920
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Tandem thin-film silicon solar cells consist of an amorphous silicon top cell and a microcrystalline silicon bottom cell which are stacked and connected in series. To match the photocurrents of the top cell and the bottom cell, a proper light management is essential. To this end, intermediate reflectors are applied between the top and the bottom solar cells. State-of-the-art single-layer intermediate reflectors are made of low refractive index materials but show poor spectral selectivity and cause parasitic reflection losses in the external quantum efficiency of the bottom cell. We report on the design of a multilayer intermediate reflector based on aluminum doped zinc oxide and microcrystalline silicon oxide with a spectrally selective reflectance. Rigorous optical simulations are used to examine the intermediate reflector even in textured thin-film solar cells. In a subsequent step, this intermediate reflector was successfully integrated into state-of-the art tandem solar cells deposited on a rough front contact. In agreement to simulation, an improved spectral selective reflectance of incident light is realized which increases the total charge carrier generation of the tandem solar cell by 0.7 mA/cm² in comparison to the state-of-the-art single-layer intermediate reflector.
536 _ _ |a 111 - Thin Film Photovoltaics (POF2-111)
|0 G:(DE-HGF)POF2-111
|c POF2-111
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Paetzold, Ulrich W.
|0 P:(DE-Juel1)130282
|b 1
|u fzj
700 1 _ |a Zhang, Chao
|0 P:(DE-Juel1)136680
|b 2
|u fzj
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 3
|u fzj
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 4
|u fzj
773 _ _ |y 2014
909 C O |o oai:juser.fz-juelich.de:173098
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145479
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130282
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)136680
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130285
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF2-110
|0 G:(DE-HGF)POF2-111
|2 G:(DE-HGF)POF2-100
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21