000173099 001__ 173099
000173099 005__ 20240708133635.0
000173099 037__ $$aFZJ-2014-06512
000173099 1001_ $$0P:(DE-Juel1)130282$$aPaetzold, Ulrich W.$$b0$$eCorresponding Author$$ufzj
000173099 1112_ $$aMRS Spring Meeting$$cSan Francisco$$d2014-04-21 - 2014-04-25$$wUSA
000173099 245__ $$aLight Trapping with Waveguide Modes in Periodically Nanostructured Thin-Film Silicon Solar Cells
000173099 260__ $$c2014
000173099 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1417705828_21921$$xInvited
000173099 3367_ $$033$$2EndNote$$aConference Paper
000173099 3367_ $$2DataCite$$aOther
000173099 3367_ $$2ORCID$$aLECTURE_SPEECH
000173099 3367_ $$2DRIVER$$aconferenceObject
000173099 3367_ $$2BibTeX$$aINPROCEEDINGS
000173099 520__ $$aThin-film silicon solar cells offer the advantages of low material and manufacturing costs. In order to enhance the absorptance of incident light in the optically thin silicon absorber layer, this technology requires advanced light-trapping concepts. Conventional devices apply randomly textured transparent conductive oxide substrates serving as light-scattering front contacts as well as reflective light-scattering metal back contacts. In recent years, several novel light-trapping concepts based on periodic nanostructures and periodically nanotextured interfaces, such as grating couplers, photonic crystals or plasmonic reflection gratings, have been suggested and prototyped. For these concepts the absorption of incident light in the solar cells is enhanced by light-coupling to waveguide modes which are supported by the silicon absorber layer of the solar cells but can be excited at the same time by incident light.In this contribution, our recent progress on light-trapping in periodically structured prototype thin-film silicon solar cells made of hydrogenated amorphous silicon and hydrogenated microcrystalline silicon is presented. The prototype solar cells show a superior light-trapping effect compared to solar cells applying the conventional random texture for light-trapping. To better understand this improved light-trapping effect, the coupling of incident light to waveguide modes in periodically nanostructured thin-film silicon solar cells is analysed in-depth. Therefore, the shape of the grating structure and the geometry of the unit cell of the two-dimensional periodic grating structure of the thin-film silicon solar cells are varied systematically and the excitation of the waveguide modes is studied. To characterize the coupling of incident light to individual waveguide modes, advanced characterization techniques, i.e. angular and polarization dependent spectral response measurements of resolution below 3 nm as well as near-field scanning optical microscopy, are developed and employed. Finally, based on our study new routes for improved designs of the periodic nanostructure of thin-film silicon solar cells will be outlined.
000173099 536__ $$0G:(DE-HGF)POF2-111$$a111 - Thin Film Photovoltaics (POF2-111)$$cPOF2-111$$fPOF II$$x0
000173099 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000173099 7001_ $$0P:(DE-Juel1)157887$$aSmeets, Michael$$b1$$ufzj
000173099 7001_ $$0P:(DE-Juel1)130264$$aLehnen, Stephan$$b2$$ufzj
000173099 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b3$$ufzj
000173099 7001_ $$0P:(DE-Juel1)130830$$aMeier, Matthias$$b4$$ufzj
000173099 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b5$$ufzj
000173099 7001_ $$0P:(DE-HGF)0$$aMichaelis, Dirk$$b6
000173099 7001_ $$0P:(DE-HGF)0$$aWaechter, Christoph$$b7
000173099 7001_ $$0P:(DE-Juel1)130225$$aCarius, Reinhard$$b8$$ufzj
000173099 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b9$$ufzj
000173099 773__ $$y2014
000173099 909CO $$ooai:juser.fz-juelich.de:173099$$pVDB
000173099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130282$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157887$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130264$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000173099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130830$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000173099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000173099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000173099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000173099 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000173099 9131_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000173099 9141_ $$y2014
000173099 920__ $$lyes
000173099 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000173099 980__ $$aconf
000173099 980__ $$aVDB
000173099 980__ $$aI:(DE-Juel1)IEK-5-20101013
000173099 980__ $$aUNRESTRICTED
000173099 981__ $$aI:(DE-Juel1)IMD-3-20101013