000173106 001__ 173106
000173106 005__ 20250701125903.0
000173106 0247_ $$2doi$$a10.1016/j.ceramint.2014.10.055
000173106 0247_ $$2WOS$$aWOS:000348961400062
000173106 037__ $$aFZJ-2014-06519
000173106 082__ $$a670
000173106 1001_ $$0P:(DE-Juel1)138890$$aPecanac, Goran$$b0$$eCorresponding Author$$ufzj
000173106 245__ $$aMechanical characterization of ceramics by means of a 3D defect analysis
000173106 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000173106 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422966165_13712
000173106 3367_ $$2DataCite$$aOutput Types/Journal article
000173106 3367_ $$00$$2EndNote$$aJournal Article
000173106 3367_ $$2BibTeX$$aARTICLE
000173106 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173106 3367_ $$2DRIVER$$aarticle
000173106 520__ $$aA three-dimensional defect study was carried out on CaTi0.9Fe0.1O3−d ceramic membrane material as a model study for the use of computed tomography in both microstructural analysis and mechanical characterization. The study demonstrated many advantages over the commonly used fractographic study which is also presented in this paper. The data obtained by computed tomography were further used for mechanical modeling and prediction of material’s behavior based on finite element analysis, where the stress state was also analyzed by varying the defect’s position and the loading configuration. The results obtained by these techniques were validated by microstructural studies, mechanical experiments and fractographic analysis. The fracture strength of the tested material was determined and compared to other potential membrane materials.
000173106 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000173106 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000173106 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b1$$ufzj
000173106 7001_ $$0P:(DE-Juel1)133721$$aPauly, Fred$$b2$$ufzj
000173106 7001_ $$0P:(DE-HGF)0$$aFontaine, M. L.$$b3
000173106 7001_ $$0P:(DE-Juel1)144671$$aNiehoff, Patrick$$b4$$ufzj
000173106 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b5$$ufzj
000173106 7001_ $$0P:(DE-Juel1)129685$$aBeck, Tilmann$$b6$$ufzj
000173106 7001_ $$0P:(DE-Juel1)129795$$aSingheiser, Lorenz$$b7$$ufzj
000173106 773__ $$0PERI:(DE-600)2018052-4$$a10.1016/j.ceramint.2014.10.055$$n2, Part A$$p2411–2417$$tCeramics international$$v41$$x0272-8842$$y2015
000173106 8564_ $$uhttps://juser.fz-juelich.de/record/173106/files/FZJ-2014-06519.pdf$$yRestricted
000173106 909CO $$ooai:juser.fz-juelich.de:173106$$pVDB
000173106 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173106 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173106 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173106 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173106 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173106 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173106 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173106 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000173106 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000173106 9141_ $$y2014
000173106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138890$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133721$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144671$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000173106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000173106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129685$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000173106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129795$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000173106 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000173106 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000173106 920__ $$lyes
000173106 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000173106 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000173106 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x2
000173106 980__ $$ajournal
000173106 980__ $$aVDB
000173106 980__ $$aI:(DE-Juel1)IEK-2-20101013
000173106 980__ $$aI:(DE-Juel1)IEK-1-20101013
000173106 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000173106 980__ $$aUNRESTRICTED
000173106 981__ $$aI:(DE-Juel1)ITE-20250108
000173106 981__ $$aI:(DE-Juel1)IMD-1-20101013
000173106 981__ $$aI:(DE-Juel1)IMD-2-20101013
000173106 981__ $$aI:(DE-Juel1)IEK-1-20101013
000173106 981__ $$aI:(DE-Juel1)ZEA-1-20090406