| Home > Publications database > Mechanical characterization of ceramics by means of a 3D defect analysis > print |
| 001 | 173106 | ||
| 005 | 20250701125903.0 | ||
| 024 | 7 | _ | |2 doi |a 10.1016/j.ceramint.2014.10.055 |
| 024 | 7 | _ | |2 WOS |a WOS:000348961400062 |
| 037 | _ | _ | |a FZJ-2014-06519 |
| 082 | _ | _ | |a 670 |
| 100 | 1 | _ | |0 P:(DE-Juel1)138890 |a Pecanac, Goran |b 0 |e Corresponding Author |u fzj |
| 245 | _ | _ | |a Mechanical characterization of ceramics by means of a 3D defect analysis |
| 260 | _ | _ | |a Amsterdam [u.a.] |b Elsevier Science |c 2015 |
| 336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1422966165_13712 |
| 336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
| 336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
| 336 | 7 | _ | |2 BibTeX |a ARTICLE |
| 336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
| 336 | 7 | _ | |2 DRIVER |a article |
| 520 | _ | _ | |a A three-dimensional defect study was carried out on CaTi0.9Fe0.1O3−d ceramic membrane material as a model study for the use of computed tomography in both microstructural analysis and mechanical characterization. The study demonstrated many advantages over the commonly used fractographic study which is also presented in this paper. The data obtained by computed tomography were further used for mechanical modeling and prediction of material’s behavior based on finite element analysis, where the stress state was also analyzed by varying the defect’s position and the loading configuration. The results obtained by these techniques were validated by microstructural studies, mechanical experiments and fractographic analysis. The fracture strength of the tested material was determined and compared to other potential membrane materials. |
| 536 | _ | _ | |0 G:(DE-HGF)POF3-111 |a 111 - Efficient and Flexible Power Plants (POF3-111) |c POF3-111 |f POF III |x 0 |
| 536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
| 700 | 1 | _ | |0 P:(DE-Juel1)129755 |a Malzbender, Jürgen |b 1 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)133721 |a Pauly, Fred |b 2 |u fzj |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Fontaine, M. L. |b 3 |
| 700 | 1 | _ | |0 P:(DE-Juel1)144671 |a Niehoff, Patrick |b 4 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)129587 |a Baumann, Stefan |b 5 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)129685 |a Beck, Tilmann |b 6 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)129795 |a Singheiser, Lorenz |b 7 |u fzj |
| 773 | _ | _ | |0 PERI:(DE-600)2018052-4 |a 10.1016/j.ceramint.2014.10.055 |n 2, Part A |p 2411–2417 |t Ceramics international |v 41 |x 0272-8842 |y 2015 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/173106/files/FZJ-2014-06519.pdf |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:173106 |p VDB |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)138890 |a Forschungszentrum Jülich GmbH |b 0 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129755 |a Forschungszentrum Jülich GmbH |b 1 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)133721 |a Forschungszentrum Jülich GmbH |b 2 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)144671 |a Forschungszentrum Jülich GmbH |b 4 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129587 |a Forschungszentrum Jülich GmbH |b 5 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129685 |a Forschungszentrum Jülich GmbH |b 6 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129795 |a Forschungszentrum Jülich GmbH |b 7 |k FZJ |
| 913 | 0 | _ | |0 G:(DE-HGF)POF2-122 |1 G:(DE-HGF)POF2-120 |2 G:(DE-HGF)POF2-100 |a DE-HGF |b Energie |l Rationelle Energieumwandlung und -nutzung |v Power Plants |x 0 |
| 913 | 1 | _ | |0 G:(DE-HGF)POF3-111 |1 G:(DE-HGF)POF3-110 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |v Efficient and Flexible Power Plants |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2014 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
| 915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
| 915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
| 915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
| 915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
| 915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |0 StatID:(DE-HGF)1160 |2 StatID |a DBCoverage |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)ZEA-1-20090406 |k ZEA-1 |l Zentralinstitut für Technologie |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 980 | _ | _ | |a I:(DE-Juel1)ZEA-1-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)ITE-20250108 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)ZEA-1-20090406 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|