000173113 001__ 173113
000173113 005__ 20240610120043.0
000173113 0247_ $$2DOI$$a10.1021/la500896e
000173113 0247_ $$2WOS$$aWOS:000336020800007
000173113 0247_ $$2altmetric$$aaltmetric:21824436
000173113 0247_ $$2pmid$$apmid:24742096
000173113 037__ $$aFZJ-2014-06526
000173113 082__ $$a670
000173113 1001_ $$0P:(DE-Juel1)145415$$aMüller, Kathrin$$b0$$eCorresponding Author$$ufzj
000173113 245__ $$aPattern Formation and Coarse-Graining in Two-Dimensional Colloids Driven by Multiaxial Magnetic Fields
000173113 260__ $$aWashington, DC$$bACS Publ.$$c2014
000173113 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417706539_21913
000173113 3367_ $$2DataCite$$aOutput Types/Journal article
000173113 3367_ $$00$$2EndNote$$aJournal Article
000173113 3367_ $$2BibTeX$$aARTICLE
000173113 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173113 3367_ $$2DRIVER$$aarticle
000173113 520__ $$aWe study the pattern formation in a two-dimensional system of superparamagnetic colloids interacting via spatially coherent induced interactions driven by an external precessing magnetic field. On the pair level, upon changing the opening angle of the external field, the interactions smoothly vary from purely repulsive (opening angle equal to zero) to purely attractive (time-averaged pair interactions at an opening angle of 90°). In the experiments, we observed ordered hexagonal crystals at the repulsive end and coarsening frothlike structures for purely attractive interactions. In both of these limiting cases, the dense colloidal systems can be sufficiently accurately described by assuming pairwise additivity of the interaction potentials. However, for a range of intermediate angles, pronounced many-body depolarization effects compete with the direct induced interactions, resulting in inherently anisotropic effective interactions. Under such conditions, we observed the decay of hexagonal order with the concomitant formation of short chains and percolated networks of chains coexisting with free colloids. In order to describe and investigate these systems theoretically, we developed a coarse-grained model of a binary mixture of patchy and nonpatchy particles with the ratio of patchy and nonpatchy colloids as the order parameter. Combining genetic algorithms with Monte Carlo simulations, we optimized the model parameters and quantitatively reproduced the experimentally observed sequence of colloidal structures. The results offer new insight into the anisotropy induced by the many-body effects. At the same time, they allow for a very efficient description of the system by means of a pairwise-additive Hamiltonian, whereupon the original, one-component system features a two-component mixture of isotropic and patchy colloids.
000173113 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000173113 7001_ $$0P:(DE-HGF)0$$aOsterman, Natan$$b1
000173113 7001_ $$0P:(DE-HGF)0$$aBabic, Dusan$$b2
000173113 7001_ $$0P:(DE-HGF)0$$aLikos, C. N.$$b3
000173113 7001_ $$0P:(DE-HGF)0$$aDobnikar, Jure$$b4
000173113 7001_ $$0P:(DE-HGF)0$$aNikoubashman, A.$$b5
000173113 773__ $$0PERI:(DE-600)2005937-1$$p5088-5096$$tLangmuir$$v30(18)$$x0743-7463$$y2014
000173113 8564_ $$uhttps://juser.fz-juelich.de/record/173113/files/FZJ-2014-06526.pdf$$yRestricted
000173113 909CO $$ooai:juser.fz-juelich.de:173113$$pVDB
000173113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145415$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173113 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000173113 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000173113 9141_ $$y2014
000173113 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173113 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173113 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173113 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173113 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173113 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173113 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173113 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000173113 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000173113 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173113 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000173113 920__ $$lyes
000173113 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000173113 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000173113 980__ $$ajournal
000173113 980__ $$aVDB
000173113 980__ $$aI:(DE-Juel1)IAS-2-20090406
000173113 980__ $$aI:(DE-Juel1)ICS-2-20110106
000173113 980__ $$aUNRESTRICTED
000173113 981__ $$aI:(DE-Juel1)IBI-5-20200312
000173113 981__ $$aI:(DE-Juel1)IAS-2-20090406
000173113 981__ $$aI:(DE-Juel1)ICS-2-20110106