000173114 001__ 173114
000173114 005__ 20240610120043.0
000173114 0247_ $$2doi$$a10.1039/c4nr03990d
000173114 0247_ $$2WOS$$aWOS:000344836800033
000173114 037__ $$aFZJ-2014-06527
000173114 041__ $$aEnglish
000173114 082__ $$a600
000173114 1001_ $$0P:(DE-Juel1)131052$$aYang, Mingcheng$$b0$$eCorresponding Author
000173114 245__ $$aA microscale thermophoretic turbine driven by external diffusive heat flux
000173114 260__ $$aCambridge$$bRSC Publ.$$c2014
000173114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417706608_21919
000173114 3367_ $$2DataCite$$aOutput Types/Journal article
000173114 3367_ $$00$$2EndNote$$aJournal Article
000173114 3367_ $$2BibTeX$$aARTICLE
000173114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173114 3367_ $$2DRIVER$$aarticle
000173114 520__ $$aWe propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling.
000173114 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000173114 7001_ $$0P:(DE-HGF)0$$aLiu, Rui$$b1
000173114 7001_ $$0P:(DE-Juel1)130920$$aRipoll, Marisol$$b2$$ufzj
000173114 7001_ $$0P:(DE-HGF)0$$aChen, Ke$$b3
000173114 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/c4nr03990d$$p13550-13554$$tNanoscale$$v6$$x2040-3364$$y2014
000173114 8564_ $$uhttps://juser.fz-juelich.de/record/173114/files/FZJ-2014-06527.pdf$$yRestricted
000173114 909CO $$ooai:juser.fz-juelich.de:173114$$pVDB
000173114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130920$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173114 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000173114 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000173114 9141_ $$y2014
000173114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173114 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173114 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173114 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000173114 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173114 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000173114 920__ $$lyes
000173114 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000173114 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000173114 980__ $$ajournal
000173114 980__ $$aVDB
000173114 980__ $$aI:(DE-Juel1)IAS-2-20090406
000173114 980__ $$aI:(DE-Juel1)ICS-2-20110106
000173114 980__ $$aUNRESTRICTED
000173114 981__ $$aI:(DE-Juel1)IBI-5-20200312
000173114 981__ $$aI:(DE-Juel1)IAS-2-20090406
000173114 981__ $$aI:(DE-Juel1)ICS-2-20110106