000173116 001__ 173116
000173116 005__ 20240712112828.0
000173116 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2014.06.021
000173116 0247_ $$2ISSN$$a0955-2219
000173116 0247_ $$2ISSN$$a1873-619X
000173116 0247_ $$2WOS$$aWOS:000343357200011
000173116 037__ $$aFZJ-2014-06529
000173116 041__ $$aEnglish
000173116 082__ $$a660
000173116 1001_ $$0P:(DE-HGF)0$$aAcker, Jérôme$$b0
000173116 245__ $$aMicrostructure of sodium-potassium niobate ceramics sintered under high alkaline vapor pressure atmosphere
000173116 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000173116 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1418710392_10611
000173116 3367_ $$2DataCite$$aOutput Types/Journal article
000173116 3367_ $$00$$2EndNote$$aJournal Article
000173116 3367_ $$2BibTeX$$aARTICLE
000173116 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173116 3367_ $$2DRIVER$$aarticle
000173116 520__ $$aOne of the most challenging steps in processing sodium potassium niobate (KNN) ceramics is sintering. At temperatures close to the solidus line, the high volatility of the alkaline becomes an issue of major concern for the sintering process. While alkaline evaporation is frequently related to difficulties in densification, few work on the effects of alkaline vapor pressure on microstructure have been reported. KNN materials with alkaline/niobium ratios ranging from 1.02 to 0.98 were sintered at 1105 °C. Two different sintering setups were used. An alkaline rich sintering atmosphere was provided when sintering the materials embedded in (K0.5Na0.5)1.02NbO3 powder, while reference ceramics were sintered in loosely covered crucibles. Resulting from the alkaline content in the sintering atmosphere a shift toward microstructures considered typical for batch compositions with higher alkaline content was detected. Densities decrease for KNN with alkaline excess and stoichiometric KNN, whereas they tend to increase for niobium excess material.
000173116 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000173116 536__ $$0G:(DE-HGF)POF2-152$$a152 - Renewable Energies (POF2-152)$$cPOF2-152$$fPOF II$$x1
000173116 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173116 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b1$$eCorresponding Author
000173116 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b2
000173116 7001_ $$0P:(DE-HGF)0$$aWagner, Susanne$$b3
000173116 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4
000173116 7001_ $$0P:(DE-HGF)0$$aHoffmann, Michael J.$$b5
000173116 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2014.06.021$$gVol. 34, no. 16, p. 4213 - 4221$$n16$$p4213 - 4221$$tJournal of the European Ceramic Society$$v34$$x0955-2219$$y2014
000173116 8564_ $$uhttps://juser.fz-juelich.de/record/173116/files/FZJ-2014-06529.pdf$$yRestricted
000173116 8767_ $$92014-07-14$$d2014-07-25$$eColour charges$$jZahlung erfolgt
000173116 909CO $$ooai:juser.fz-juelich.de:173116$$popenCost$$pOpenAPC$$pVDB
000173116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000173116 9132_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000173116 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000173116 9131_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vRenewable Energies$$x1
000173116 9141_ $$y2014
000173116 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173116 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173116 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173116 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173116 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173116 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173116 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173116 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173116 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000173116 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000173116 920__ $$lyes
000173116 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000173116 980__ $$ajournal
000173116 980__ $$aVDB
000173116 980__ $$aI:(DE-Juel1)IEK-9-20110218
000173116 980__ $$aUNRESTRICTED
000173116 980__ $$aAPC
000173116 981__ $$aI:(DE-Juel1)IET-1-20110218