001     173116
005     20240712112828.0
024 7 _ |a 10.1016/j.jeurceramsoc.2014.06.021
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a WOS:000343357200011
|2 WOS
037 _ _ |a FZJ-2014-06529
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Acker, Jérôme
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Microstructure of sodium-potassium niobate ceramics sintered under high alkaline vapor pressure atmosphere
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1418710392_10611
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a One of the most challenging steps in processing sodium potassium niobate (KNN) ceramics is sintering. At temperatures close to the solidus line, the high volatility of the alkaline becomes an issue of major concern for the sintering process. While alkaline evaporation is frequently related to difficulties in densification, few work on the effects of alkaline vapor pressure on microstructure have been reported. KNN materials with alkaline/niobium ratios ranging from 1.02 to 0.98 were sintered at 1105 °C. Two different sintering setups were used. An alkaline rich sintering atmosphere was provided when sintering the materials embedded in (K0.5Na0.5)1.02NbO3 powder, while reference ceramics were sintered in loosely covered crucibles. Resulting from the alkaline content in the sintering atmosphere a shift toward microstructures considered typical for batch compositions with higher alkaline content was detected. Densities decrease for KNN with alkaline excess and stoichiometric KNN, whereas they tend to increase for niobium excess material.
536 _ _ |a 123 - Fuel Cells (POF2-123)
|0 G:(DE-HGF)POF2-123
|c POF2-123
|f POF II
|x 0
536 _ _ |a 152 - Renewable Energies (POF2-152)
|0 G:(DE-HGF)POF2-152
|c POF2-152
|f POF II
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 1
|e Corresponding Author
700 1 _ |a Schierholz, Roland
|0 P:(DE-Juel1)161348
|b 2
700 1 _ |a Wagner, Susanne
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
700 1 _ |a Hoffmann, Michael J.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.jeurceramsoc.2014.06.021
|g Vol. 34, no. 16, p. 4213 - 4221
|0 PERI:(DE-600)2013983-4
|n 16
|p 4213 - 4221
|t Journal of the European Ceramic Society
|v 34
|y 2014
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/173116/files/FZJ-2014-06529.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:173116
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161348
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-123
|2 G:(DE-HGF)POF2-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|b Energie
|1 G:(DE-HGF)POF2-150
|0 G:(DE-HGF)POF2-152
|2 G:(DE-HGF)POF2-100
|v Renewable Energies
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Technologie, Innovation und Gesellschaft
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21