000173156 001__ 173156
000173156 005__ 20210129214558.0
000173156 0247_ $$2doi$$a10.1007/s00259-014-2959-4
000173156 0247_ $$2ISSN$$a0340-6997
000173156 0247_ $$2ISSN$$a1432-105X
000173156 0247_ $$2ISSN$$a1619-7070
000173156 0247_ $$2ISSN$$a1619-7089
000173156 0247_ $$2WOS$$aWOS:000350686300004
000173156 0247_ $$2altmetric$$aaltmetric:3762284
000173156 0247_ $$2pmid$$apmid:25411133
000173156 037__ $$aFZJ-2014-06569
000173156 082__ $$a610
000173156 1001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b0$$eCorresponding Author$$ufzj
000173156 245__ $$aDiagnosis of pseudoprogression in patients with glioblastoma using O-(2-[$^{18}$F]fluoroethyl)-l-tyrosine PET
000173156 260__ $$aHeidelberg [u.a.]$$bSpringer-Verl.$$c2015
000173156 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439788362_7252
000173156 3367_ $$2DataCite$$aOutput Types/Journal article
000173156 3367_ $$00$$2EndNote$$aJournal Article
000173156 3367_ $$2BibTeX$$aARTICLE
000173156 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173156 3367_ $$2DRIVER$$aarticle
000173156 520__ $$aPurposeThe follow-up of glioblastoma patients after radiochemotherapy with conventional MRI can be difficult since reactive alterations to the blood–brain barrier with contrast enhancement may mimic tumour progression (i.e. pseudoprogression, PsP). The aim of this study was to assess the clinical value of O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET in the differentiation of PsP and early tumour progression (EP) after radiochemotherapy of glioblastoma.MethodsA group of 22 glioblastoma patients with new contrast-enhancing lesions or lesions showing increased enhancement (>25 %) on standard MRI within the first 12 weeks after completion of radiochemotherapy with concomitant temozolomide (median 7 weeks) were additionally examined using amino acid PET with 18F-FET. Maximum and mean tumour-to-brain ratios (TBRmax, TBRmean) were determined. 18F-FET uptake kinetic parameters (i.e. patterns of time–activity curves, TAC) were also evaluated. Classification as PsP or EP was based on the clinical course (no treatment change at least for 6 months), follow-up MR imaging and/or histopathological findings. Imaging results were also related to overall survival (OS).ResultsPsP was confirmed in 11 of the 22 patients. In patients with PsP, 18F-FET uptake was significantly lower than in patients with EP (TBRmax 1.9 ± 0.4 vs. 2.8 ± 0.5, TBRmean 1.8 ± 0.2 vs. 2.3 ± 0.3; both P < 0.001) and presence of MGMT promoter methylation was significantly more frequent (P = 0.05). Furthermore, a TAC type II or III was more frequently present in patients with EP (P = 0.04). Receiver operating characteristic analysis showed that the optimal 18F-FET TBRmax cut-off value for identifying PsP was 2.3 (sensitivity 100 %, specificity 91 %, accuracy 96 %, AUC 0.94 ± 0.06; P < 0.001). Univariate survival analysis showed that a TBRmax <2.3 predicted a significantly longer OS (median OS 23 vs. 12 months; P = 0.046).Conclusion18F-FET PET may facilitate the diagnosis of PsP following radiochemotherapy of glioblastoma.
000173156 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000173156 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173156 7001_ $$0P:(DE-Juel1)156211$$aDunkl, Veronika$$b1
000173156 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b2$$ufzj
000173156 7001_ $$0P:(DE-HGF)0$$aHutterer, Markus$$b3
000173156 7001_ $$0P:(DE-HGF)0$$aRapp, Marion$$b4
000173156 7001_ $$0P:(DE-Juel1)165921$$aSabel, Michael$$b5
000173156 7001_ $$0P:(DE-HGF)0$$aReifenberger, Guido$$b6
000173156 7001_ $$0P:(DE-HGF)0$$aKebir, Sied$$b7
000173156 7001_ $$0P:(DE-HGF)0$$aDorn, Franziska$$b8
000173156 7001_ $$0P:(DE-HGF)0$$aBlau, Tobias$$b9
000173156 7001_ $$0P:(DE-HGF)0$$aHerrlinger, Ulrich$$b10
000173156 7001_ $$0P:(DE-HGF)0$$aHau, Peter$$b11
000173156 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian I.$$b12
000173156 7001_ $$0P:(DE-HGF)0$$aKocher, Martin$$b13
000173156 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b14
000173156 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b15$$ufzj
000173156 7001_ $$0P:(DE-HGF)0$$aDrzezga, Alexander$$b16
000173156 7001_ $$0P:(DE-Juel1)157935$$aSchmidt, Matthias$$b17$$ufzj
000173156 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b18$$ufzj
000173156 773__ $$0PERI:(DE-600)2098375-X$$a10.1007/s00259-014-2959-4$$n5$$p685-695$$tEuropean journal of nuclear medicine and molecular imaging$$v42$$x1619-7089$$y2015
000173156 8564_ $$uhttps://juser.fz-juelich.de/record/173156/files/art_10.1007_s00259-014-2959-4.pdf$$yRestricted
000173156 8564_ $$uhttps://juser.fz-juelich.de/record/173156/files/art_10.1007_s00259-014-2959-4.gif?subformat=icon$$xicon$$yRestricted
000173156 8564_ $$uhttps://juser.fz-juelich.de/record/173156/files/art_10.1007_s00259-014-2959-4.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000173156 8564_ $$uhttps://juser.fz-juelich.de/record/173156/files/art_10.1007_s00259-014-2959-4.jpg?subformat=icon-180$$xicon-180$$yRestricted
000173156 8564_ $$uhttps://juser.fz-juelich.de/record/173156/files/art_10.1007_s00259-014-2959-4.jpg?subformat=icon-640$$xicon-640$$yRestricted
000173156 8564_ $$uhttps://juser.fz-juelich.de/record/173156/files/art_10.1007_s00259-014-2959-4.pdf?subformat=pdfa$$xpdfa$$yRestricted
000173156 909CO $$ooai:juser.fz-juelich.de:173156$$pVDB
000173156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich GmbH$$b15$$kFZJ
000173156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157935$$aForschungszentrum Jülich GmbH$$b17$$kFZJ
000173156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich GmbH$$b18$$kFZJ
000173156 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000173156 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000173156 9141_ $$y2015
000173156 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173156 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173156 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000173156 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173156 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173156 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173156 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173156 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173156 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000173156 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000173156 920__ $$lyes
000173156 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000173156 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000173156 980__ $$ajournal
000173156 980__ $$aVDB
000173156 980__ $$aI:(DE-Juel1)INM-3-20090406
000173156 980__ $$aI:(DE-Juel1)INM-4-20090406
000173156 980__ $$aUNRESTRICTED
000173156 981__ $$aI:(DE-Juel1)INM-4-20090406