000173297 001__ 173297
000173297 005__ 20210129214617.0
000173297 037__ $$aFZJ-2014-06708
000173297 041__ $$aEnglish
000173297 1001_ $$0P:(DE-Juel1)157873$$aLämmel, Gregor$$b0$$eCorresponding Author$$ufzj
000173297 1112_ $$aTransportation Research Board 93th Annual Meeting$$cWashington D.C.$$d2014-01-12 - 2014-01-16$$gTRB$$wUSA
000173297 245__ $$aLarge scale and microscopic: a fast simulation approach for urban areas
000173297 260__ $$aWashington$$bTransportation Research Board Annual Meeting Online$$c2014
000173297 29510 $$a2014 TRB Annual Meeting Proceedings
000173297 300__ $$a14-3890
000173297 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1422878526_13705
000173297 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000173297 3367_ $$033$$2EndNote$$aConference Paper
000173297 3367_ $$2ORCID$$aCONFERENCE_PAPER
000173297 3367_ $$2DataCite$$aOutput Types/Conference Paper
000173297 3367_ $$2DRIVER$$aconferenceObject
000173297 3367_ $$2BibTeX$$aINPROCEEDINGS
000173297 500__ $$adiese pdf-Datei darf NICHT open access werden, die Autoren haben auch dem online-Proceedingsband keine Genehmigung zur freien Verfügbarkeit erteilt.
000173297 520__ $$aAgent based pedestrian simulation models can be distinguished by their granularity. Models that consider the simulation environment as a two dimensional continuous space and perform the simulation in small time steps are usually called microscopic, while models that still represent individual persons but rely on a coarser abstraction of the real world or often called mesoscopic. Macroscopic models only use densities or groups of persons. In many situations a coarse representation is to favor over a finer one because (i) less data has to be collected and processed in order to setup a simulation scenario and (ii) a coarser simulation model usually is less consuming in terms of computational costs compared to a coarser model. Nevertheless, there are still situations where a microscopic simulation is needed and wanted. Examples are crossing pedestrian streams, bidirectional flows at high densities, and the simulation of pedestrians with multiple destinations (e.g. pedestrian movement in shopping malls). One approach that takes advantage of both kinds of models is a hybrid combination in which a microscopic model is applied where needed and a mesoscopic model where plausible. When coupling different models one requirement is that dynamic properties like flow, density and speed are conserved over the models’ boundaries. This work focuses on the hybrid combination of a mesoscopic queuing model and a microscopic model that is based on considering obstacles in velocity space. The main contribution of this work is a method for a hybrid coupling that guaranties dynamic properties like flow, density and speed are conserved over the models’ boundaries. Furthermore, an efficient way to represent the simulation environment and retrieve dynamic information is discussed. The performance of the proposed model is shown based on a hypothetical large-scale scenario.
000173297 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000173297 7001_ $$0P:(DE-Juel1)132269$$aSteffen, Bernhard$$b1
000173297 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b2
000173297 8564_ $$uhttps://juser.fz-juelich.de/record/173297/files/FZJ-2014-06708.pdf$$yRestricted
000173297 909CO $$ooai:juser.fz-juelich.de:173297$$pVDB
000173297 9141_ $$y2014
000173297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157873$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132269$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173297 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000173297 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000173297 920__ $$lyes
000173297 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000173297 980__ $$acontrib
000173297 980__ $$aVDB
000173297 980__ $$acontb
000173297 980__ $$aI:(DE-Juel1)JSC-20090406
000173297 980__ $$aUNRESTRICTED