000173307 001__ 173307
000173307 005__ 20210129214618.0
000173307 037__ $$aFZJ-2014-06718
000173307 1001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b0$$eCorresponding Author$$ufzj
000173307 1112_ $$aXXVI IUPAP Conference on Computational Physics$$cBoston$$d2014-08-11 - 2014-08-14$$gCCP2014$$wUSA
000173307 245__ $$aFrom quarks to hadrons and back: spectral and bulk properties of strongly interacting matter from Lattice QCD
000173307 260__ $$c2014
000173307 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1418303049_4286$$xOther
000173307 3367_ $$033$$2EndNote$$aConference Paper
000173307 3367_ $$2DataCite$$aOther
000173307 3367_ $$2ORCID$$aLECTURE_SPEECH
000173307 3367_ $$2DRIVER$$aconferenceObject
000173307 3367_ $$2BibTeX$$aINPROCEEDINGS
000173307 520__ $$aComputing, from first principles, the hadron masses to percent accuracy [Science 322, 1224], is only possible through simulations of Lattice Quantum Chromodynamics (QCD). With the advent of the present class of Pflop Machines and novel simulation algorithms, we now can proceed to compute per-mille effects in the particle spectrum, i.e. the proton-neutron mass difference. This difference is due to a subtle cancellation of already small effects (due to the mass difference of the up- and down-quarks and the presence of electromagnetic interactions). I will report on a Project [Phys.Rev.Lett. 111, 252001 and arXiv:1406.4088] to compute this and other mass differences using simulations of Lattice QCD and Quantum Electrodynamics and discuss the new simulations methods and highly efficient code employed. In the case of the proton and the neutron, quarks and gluons are confined to the hadron. If we, however, increase the temperature of the system sufficiently, both particles will 'melt' and quarks and gluons behave as free particles ('quark-gluon-plasma'). This transition is described by the Equation of State (EoS) of QCD [JHEP 1011,077]. I will discuss an ongoing project (e.g. [Nucl.Phys. A904-905, 869c]) aimed at calculating the EoS including the effects of a dynamical charm quark, which is relevant for temperatures larger than 300-400 MeV.
000173307 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000173307 773__ $$y2014
000173307 909CO $$ooai:juser.fz-juelich.de:173307$$pVDB
000173307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173307 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000173307 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000173307 9141_ $$y2014
000173307 920__ $$lyes
000173307 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000173307 980__ $$aconf
000173307 980__ $$aVDB
000173307 980__ $$aI:(DE-Juel1)JSC-20090406
000173307 980__ $$aUNRESTRICTED