000173312 001__ 173312
000173312 005__ 20240619091122.0
000173312 037__ $$aFZJ-2014-06723
000173312 1001_ $$0P:(DE-Juel1)128749$$aWördenweber, Roger$$b0$$eCorresponding Author
000173312 1112_ $$a23rd IEEE International Symposium on Applications of Ferroelectrics (ISAF) International Workshop on Acoustic Transduction Materials and Devices (IWATMD) Piezoresponse Force Microscopy Workshop (PFM)$$cState College$$d2014-05-12 - 2014-05-16$$wUSA
000173312 245__ $$aImpact of Compressional and Tensile Biaxially-Anisotropic Strain on the Ferroelectric Properties of Epitaxial NaNbO3 and SrTiO3 Films
000173312 260__ $$c2014
000173312 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1420632273_23895$$xAfter Call
000173312 3367_ $$033$$2EndNote$$aConference Paper
000173312 3367_ $$2DataCite$$aOther
000173312 3367_ $$2ORCID$$aLECTURE_SPEECH
000173312 3367_ $$2DRIVER$$aconferenceObject
000173312 3367_ $$2BibTeX$$aINPROCEEDINGS
000173312 520__ $$aImpact of Compressional and Tensile Biaxially-Anisotropic Strain on the Ferroelectric Properties of Epitaxial NaNbO3 and SrTiO3 Films R. Wördenweber1, J. Schwarzkopf2, Biya Cai1, Yang Dai1, D. Braun2, J. Schubert1, E. Hollmann11Peter Grünberg Institute (PGI) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, D-52425 Jülich, Germany2Leibniz-Institute for Crystal Growth, Max-Born-Str. 2, D-12489 Berlin, GermanyThe impact of anisotropic biaxial strain on the ferroelectric properties of thin oxide films (20-100nm) are examined for the example of epitaxial NaNbO3 and SrTiO3 films that are grown on different single-crystalline oxide substrates with varying lattice mismatch. Generally, tensile in-plane strain leads to an increase of the ferroelectric in-plane transition temperature whereas compressive strain tents to decrease the transition temperature. Shifts of the transition temperature by several 100K can easily be obtained via this method. Our investigations have shown that the phase transition itself and the ferroelectric states of the anisotropically strained films turn out to be highly complex. First, the transition temperature depends on the direction of the applied electric field which contradicts the concept of a uniform phase transition for a given system. Second, all systems, that we examined, showed relaxor properties which are usually expected for systems consisting of a mixture of phases. Third, ferro- to antiferroelectric transitions are observed. These transitions seem to be connected to the presence of polar nanoregions. Finally, all systems show a distinct frequency dependence of the complex permittivity at low frequencies (typically <1kHz) and intermediate temperatures around room temperature. Again this behavior seems to be connected to the presence of polar nanoregions and points to an additional Maxwell-Wagner like mechanism that seems to be present in the temperature regime where the polar nanoregions are present and mobile.
000173312 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000173312 536__ $$0G:(DE-HGF)POF2-453$$a453 - Physics of the Cell (POF2-453)$$cPOF2-453$$fPOF II$$x1
000173312 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x2
000173312 7001_ $$0P:(DE-HGF)0$$aSchwarzkopf, J.$$b1
000173312 7001_ $$0P:(DE-Juel1)156302$$acai, biya$$b2$$ufzj
000173312 7001_ $$0P:(DE-Juel1)161308$$aDai, Yang$$b3
000173312 7001_ $$0P:(DE-HGF)0$$aBraun, D.$$b4
000173312 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b5
000173312 7001_ $$0P:(DE-Juel1)128687$$aHollmann, Eugen$$b6
000173312 773__ $$y2014
000173312 909CO $$ooai:juser.fz-juelich.de:173312$$pVDB
000173312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156302$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161308$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000173312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000173312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128687$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000173312 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6214$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000173312 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x1
000173312 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000173312 9131_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vPhysics of the Cell$$x1
000173312 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x2
000173312 9141_ $$y2014
000173312 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000173312 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x1
000173312 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x2
000173312 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000173312 980__ $$aconf
000173312 980__ $$aVDB
000173312 980__ $$aI:(DE-Juel1)PGI-8-20110106
000173312 980__ $$aI:(DE-Juel1)ICS-8-20110106
000173312 980__ $$aI:(DE-Juel1)PGI-9-20110106
000173312 980__ $$aI:(DE-82)080009_20140620
000173312 980__ $$aUNRESTRICTED
000173312 981__ $$aI:(DE-Juel1)IBI-3-20200312
000173312 981__ $$aI:(DE-Juel1)ICS-8-20110106
000173312 981__ $$aI:(DE-Juel1)PGI-9-20110106