001     173312
005     20240619091122.0
037 _ _ |a FZJ-2014-06723
100 1 _ |a Wördenweber, Roger
|0 P:(DE-Juel1)128749
|b 0
|e Corresponding Author
111 2 _ |a 23rd IEEE International Symposium on Applications of Ferroelectrics (ISAF) International Workshop on Acoustic Transduction Materials and Devices (IWATMD) Piezoresponse Force Microscopy Workshop (PFM)
|c State College
|d 2014-05-12 - 2014-05-16
|w USA
245 _ _ |a Impact of Compressional and Tensile Biaxially-Anisotropic Strain on the Ferroelectric Properties of Epitaxial NaNbO3 and SrTiO3 Films
260 _ _ |c 2014
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1420632273_23895
|2 PUB:(DE-HGF)
|x After Call
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Impact of Compressional and Tensile Biaxially-Anisotropic Strain on the Ferroelectric Properties of Epitaxial NaNbO3 and SrTiO3 Films R. Wördenweber1, J. Schwarzkopf2, Biya Cai1, Yang Dai1, D. Braun2, J. Schubert1, E. Hollmann11Peter Grünberg Institute (PGI) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, D-52425 Jülich, Germany2Leibniz-Institute for Crystal Growth, Max-Born-Str. 2, D-12489 Berlin, GermanyThe impact of anisotropic biaxial strain on the ferroelectric properties of thin oxide films (20-100nm) are examined for the example of epitaxial NaNbO3 and SrTiO3 films that are grown on different single-crystalline oxide substrates with varying lattice mismatch. Generally, tensile in-plane strain leads to an increase of the ferroelectric in-plane transition temperature whereas compressive strain tents to decrease the transition temperature. Shifts of the transition temperature by several 100K can easily be obtained via this method. Our investigations have shown that the phase transition itself and the ferroelectric states of the anisotropically strained films turn out to be highly complex. First, the transition temperature depends on the direction of the applied electric field which contradicts the concept of a uniform phase transition for a given system. Second, all systems, that we examined, showed relaxor properties which are usually expected for systems consisting of a mixture of phases. Third, ferro- to antiferroelectric transitions are observed. These transitions seem to be connected to the presence of polar nanoregions. Finally, all systems show a distinct frequency dependence of the complex permittivity at low frequencies (typically <1kHz) and intermediate temperatures around room temperature. Again this behavior seems to be connected to the presence of polar nanoregions and points to an additional Maxwell-Wagner like mechanism that seems to be present in the temperature regime where the polar nanoregions are present and mobile.
536 _ _ |a 423 - Sensorics and bioinspired systems (POF2-423)
|0 G:(DE-HGF)POF2-423
|c POF2-423
|f POF II
|x 0
536 _ _ |a 453 - Physics of the Cell (POF2-453)
|0 G:(DE-HGF)POF2-453
|c POF2-453
|f POF II
|x 1
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 2
700 1 _ |a Schwarzkopf, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a cai, biya
|0 P:(DE-Juel1)156302
|b 2
|u fzj
700 1 _ |a Dai, Yang
|0 P:(DE-Juel1)161308
|b 3
700 1 _ |a Braun, D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 5
700 1 _ |a Hollmann, Eugen
|0 P:(DE-Juel1)128687
|b 6
773 _ _ |y 2014
909 C O |o oai:juser.fz-juelich.de:173312
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)128749
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156302
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161308
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128631
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128687
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6214
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 1
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-423
|2 G:(DE-HGF)POF2-400
|v Sensorics and bioinspired systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-453
|2 G:(DE-HGF)POF2-400
|v Physics of the Cell
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)ICS-8-20110106
981 _ _ |a I:(DE-Juel1)PGI-9-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21