000173339 001__ 173339
000173339 005__ 20240313103126.0
000173339 0247_ $$2pmid$$apmid:17622982
000173339 0247_ $$2ISSN$$a0219-6352
000173339 0247_ $$2ISSN$$a1757-448X
000173339 0247_ $$2Handle$$a2128/15112
000173339 0247_ $$2arXiv$$aarXiv:1801.01711
000173339 037__ $$aFZJ-2014-06749
000173339 041__ $$aeng
000173339 082__ $$a610
000173339 1001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b0$$eCorresponding Author$$ufzj
000173339 245__ $$aVariability of model-free and model-based quantitative measures of EEG
000173339 260__ $$aSingapore$$bWorld Scientific Publ.$$c2007
000173339 3367_ $$2DRIVER$$aarticle
000173339 3367_ $$2DataCite$$aOutput Types/Journal article
000173339 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513609549_13643
000173339 3367_ $$2BibTeX$$aARTICLE
000173339 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173339 3367_ $$00$$2EndNote$$aJournal Article
000173339 520__ $$aVariable contributions of state and trait to the electroencephalographic (EEG) signal affect the stability over time of EEG measures, quite apart from other experimental uncertainties. The extent of intraindividual and interindividual variability is an important factor in determining the statistical, and hence possibly clinical significance of observed differences in the EEG. This study investigates the changes in classical quantitative EEG (qEEG) measures, as well as of parameters obtained by fitting frequency spectra to an existing continuum model of brain electrical activity. These parameters may have extra variability due to model selection and fitting. Besides estimating the levels of intraindividual and interindividual variability, we determined approximate time scales for change in qEEG measures and model parameters. This provides an estimate of the recording length needed to capture a given percentage of the total intraindividual variability. Also, if more precise time scales can be obtained in future, these may aid the characterization of physiological processes underlying various EEG measures. Heterogeneity of the subject group was constrained by testing only healthy males in a narrow age range (mean = 22.3 years, sd = 2.7). Eyes-closed EEGs of 32 subjects were recorded at weekly intervals over an approximately six-week period, of which 13 subjects were followed for a year. QEEG measures, computed from Cz spectra, were powers in five frequency bands, alpha peak frequency, and spectral entropy. Of these, theta, alpha, and beta band powers were most reproducible. Of the nine model parameters obtained by fitting model predictions to experiment, the most reproducible ones quantified the total power and the time delay between cortex and thalamus. About 95% of the maximum change in spectral parameters was reached within minutes of recording time, implying that repeat recordings are not necessary to capture the bulk of the variability in EEG spectra.
000173339 536__ $$0G:(DE-HGF)POF2-331$$a331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)$$cPOF2-331$$fPOF II$$x0
000173339 588__ $$aDataset connected to juser.fz-juelich.de, PubMed,
000173339 7001_ $$aRennie, Christopher J$$b1
000173339 7001_ $$aRobinson, Peter A$$b2
000173339 773__ $$0PERI:(DE-600)2115865-4$$n2$$p279 - 307$$tJournal of integrative neuroscience$$v6$$x0219-6352$$y2007
000173339 8564_ $$uhttps://juser.fz-juelich.de/record/173339/files/vanAlbada2007_variability_of_EEG.pdf$$yRestricted
000173339 8564_ $$uhttps://juser.fz-juelich.de/record/173339/files/vanAlbada2007_variability_of_EEG.gif?subformat=icon$$xicon$$yRestricted
000173339 8564_ $$uhttps://juser.fz-juelich.de/record/173339/files/vanAlbada2007_variability_of_EEG.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000173339 8564_ $$uhttps://juser.fz-juelich.de/record/173339/files/vanAlbada2007_variability_of_EEG.jpg?subformat=icon-180$$xicon-180$$yRestricted
000173339 8564_ $$uhttps://juser.fz-juelich.de/record/173339/files/vanAlbada2007_variability_of_EEG.jpg?subformat=icon-640$$xicon-640$$yRestricted
000173339 8564_ $$uhttps://juser.fz-juelich.de/record/173339/files/vanAlbada2007_variability_of_EEG.pdf?subformat=pdfa$$xpdfa$$yRestricted
000173339 909CO $$ooai:juser.fz-juelich.de:173339$$pextern4vita$$qdnbdelivery
000173339 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173339 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000173339 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173339 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173339 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173339 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000173339 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000173339 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000173339 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173339 915__ $$0StatID:(DE-HGF)10000$$2StatID$$aHosted Content
000173339 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173339 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173339 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000173339 9131_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0
000173339 920__ $$lno
000173339 9801_ $$aEXTERN4VITA
000173339 980__ $$ajournal
000173339 980__ $$aI:(DE-Juel1)INM-6-20090406
000173339 980__ $$aI:(DE-Juel1)IAS-6-20130828
000173339 980__ $$aI:(DE-Juel1)IAS-6-20130828