001     173345
005     20250314084111.0
024 7 _ |2 Handle
|a 2128/8412
037 _ _ |a FZJ-2014-06755
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)132112
|a Geimer, Markus
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a 26th International Conference for High Performance Computing, Networking, Storage and Analysis
|c New Orleans, LA
|d 2014-11-16 - 2014-11-21
|g SC'14
|w USA
245 _ _ |a Hands-On Practical Hybrid Parallel Application Performance Engineering
|f 2014-11-16
260 _ _ |c 2014
336 7 _ |0 PUB:(DE-HGF)31
|2 PUB:(DE-HGF)
|a Talk (non-conference)
|b talk
|m talk
|s 1424427666_9319
|x After Call
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 DataCite
|a Other
336 7 _ |2 DINI
|a Other
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 ORCID
|a LECTURE_SPEECH
520 _ _ |a This tutorial presents state-of-the-art performance tools for leading-edge HPC systems founded on the Score-P community-developed instrumentation and measurement infrastructure, demonstrating how they can be used for performance engineering of effective scientific applications based on standard MPI, OpenMP, hybrid combination of both, and increasingly common usage of accelerators. Parallel performance tools from the Virtual Institute - High Productivity Supercomputing (VI-HPS) are introduced and featured in hands-on exercises with Scalasca, Vampir, and TAU. We present the complete workflow of performance engineering, including instrumentation, measurement (profiling and tracing, timing and PAPI hardware counters), data storage, analysis, and visualization. Emphasis is placed on how tools are used in combination for identifying performance problems and investigating optimization alternatives. Using their own notebook computers with a provided Linux Live-ISO image containing all of the tools (running within a virtual machine or booted directly from DVD/USB) will help to prepare participants to locate and diagnose performance bottlenecks in their own parallel programs.
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
700 1 _ |0 P:(DE-HGF)0
|a Shende, Sameer S.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Wesarg, Bert
|b 2
700 1 _ |0 P:(DE-Juel1)132302
|a Wylie, Brian J. N.
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Linford, John
|b 4
773 _ _ |y 2014
856 4 _ |u https://juser.fz-juelich.de/record/173345/files/FZJ-2014-06755.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/173345/files/FZJ-2014-06755.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/173345/files/FZJ-2014-06755.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/173345/files/FZJ-2014-06755.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:173345
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132112
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132302
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a talk
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21