000173348 001__ 173348
000173348 005__ 20250129092407.0
000173348 037__ $$aFZJ-2014-06758
000173348 041__ $$aEnglish
000173348 1001_ $$0P:(DE-Juel1)130625$$aDück, Marcel$$b0$$eCorresponding Author$$ufzj
000173348 1112_ $$aSICE Annual Conference 2014$$cSapporo$$d2014-09-09 - 2014-09-12$$gSICE 2014$$wJapan
000173348 245__ $$aRaspberry Pi based testbed verifying TrueTime network model parameters forapplication in distributed active turbulent flow control
000173348 260__ $$c2014
000173348 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1421058847_25618$$xAfter Call
000173348 3367_ $$033$$2EndNote$$aConference Paper
000173348 3367_ $$2DataCite$$aOther
000173348 3367_ $$2ORCID$$aLECTURE_SPEECH
000173348 3367_ $$2DRIVER$$aconferenceObject
000173348 3367_ $$2BibTeX$$aINPROCEEDINGS
000173348 520__ $$aThe total drag of transport systems such as airplanes, ships and/or trains is primarily determined by frictiondrag. At high Reynolds numbers (< 104) transversal surface waves are a promising approach for active drag reduction.For the application in airplanes or ships a large scale distributed real-time actuator and sensor network is required in orderto provide a connection between a global flow control and the distributed actuators and sensors. For the developmentof this network we established a network model based on Simulink and TrueTime. To determine the network- andtransmission-parameters for the model we set up a Raspberry Pi based testbed as a physical representation of a first smallscale model. Using this testbed the parameters for the TrueTime network model have been retrieved. With this approachwe assure a link between the large scale model and the later microcontroller based real time actuator and sensor networkfor distributed active turbulent flow control.
000173348 536__ $$0G:(DE-HGF)POF2-125$$a125 - Energy-efficient Processes (POF2-125)$$cPOF2-125$$fPOF II$$x0
000173348 7001_ $$0P:(DE-Juel1)133936$$aSchlösser, Mario$$b1$$ufzj
000173348 7001_ $$0P:(DE-Juel1)151363$$aKaparaki, Maria$$b2$$ufzj
000173348 7001_ $$0P:(DE-Juel1)157610$$aSrivastava, Suvansh$$b3
000173348 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b4$$ufzj
000173348 7001_ $$0P:(DE-Juel1)133935$$aSchiek, Michael$$b5$$ufzj
000173348 773__ $$y2014
000173348 8564_ $$uhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6935311
000173348 909CO $$ooai:juser.fz-juelich.de:173348$$pVDB
000173348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130625$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133936$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151363$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000173348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133935$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000173348 9132_ $$0G:(DE-HGF)POF3-112$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vEnergy Efficient Processes$$x0
000173348 9131_ $$0G:(DE-HGF)POF2-125$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vEnergy-efficient Processes$$x0
000173348 9141_ $$y2014
000173348 920__ $$lyes
000173348 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000173348 980__ $$aconf
000173348 980__ $$aVDB
000173348 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000173348 980__ $$aUNRESTRICTED
000173348 981__ $$aI:(DE-Juel1)PGI-4-20110106