Home > Publications database > Raspberry Pi based testbed verifying TrueTime network model parameters forapplication in distributed active turbulent flow control > print |
001 | 173348 | ||
005 | 20250129092407.0 | ||
037 | _ | _ | |a FZJ-2014-06758 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Dück, Marcel |0 P:(DE-Juel1)130625 |b 0 |e Corresponding Author |u fzj |
111 | 2 | _ | |a SICE Annual Conference 2014 |g SICE 2014 |c Sapporo |d 2014-09-09 - 2014-09-12 |w Japan |
245 | _ | _ | |a Raspberry Pi based testbed verifying TrueTime network model parameters forapplication in distributed active turbulent flow control |
260 | _ | _ | |c 2014 |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1421058847_25618 |2 PUB:(DE-HGF) |x After Call |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
520 | _ | _ | |a The total drag of transport systems such as airplanes, ships and/or trains is primarily determined by frictiondrag. At high Reynolds numbers (< 104) transversal surface waves are a promising approach for active drag reduction.For the application in airplanes or ships a large scale distributed real-time actuator and sensor network is required in orderto provide a connection between a global flow control and the distributed actuators and sensors. For the developmentof this network we established a network model based on Simulink and TrueTime. To determine the network- andtransmission-parameters for the model we set up a Raspberry Pi based testbed as a physical representation of a first smallscale model. Using this testbed the parameters for the TrueTime network model have been retrieved. With this approachwe assure a link between the large scale model and the later microcontroller based real time actuator and sensor networkfor distributed active turbulent flow control. |
536 | _ | _ | |a 125 - Energy-efficient Processes (POF2-125) |0 G:(DE-HGF)POF2-125 |c POF2-125 |f POF II |x 0 |
700 | 1 | _ | |a Schlösser, Mario |0 P:(DE-Juel1)133936 |b 1 |u fzj |
700 | 1 | _ | |a Kaparaki, Maria |0 P:(DE-Juel1)151363 |b 2 |u fzj |
700 | 1 | _ | |a Srivastava, Suvansh |0 P:(DE-Juel1)157610 |b 3 |
700 | 1 | _ | |a van Waasen, Stefan |0 P:(DE-Juel1)142562 |b 4 |u fzj |
700 | 1 | _ | |a Schiek, Michael |0 P:(DE-Juel1)133935 |b 5 |u fzj |
773 | _ | _ | |y 2014 |
856 | 4 | _ | |u http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6935311 |
909 | C | O | |o oai:juser.fz-juelich.de:173348 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130625 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)133936 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)151363 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)142562 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)133935 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-112 |2 G:(DE-HGF)POF3-100 |v Energy Efficient Processes |x 0 |
913 | 1 | _ | |a DE-HGF |b Energie |l Rationelle Energieumwandlung und -nutzung |1 G:(DE-HGF)POF2-120 |0 G:(DE-HGF)POF2-125 |2 G:(DE-HGF)POF2-100 |v Energy-efficient Processes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2014 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ZEA-2-20090406 |k ZEA-2 |l Zentralinstitut für Elektronik |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ZEA-2-20090406 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|