001     173348
005     20250129092407.0
037 _ _ |a FZJ-2014-06758
041 _ _ |a English
100 1 _ |a Dück, Marcel
|0 P:(DE-Juel1)130625
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a SICE Annual Conference 2014
|g SICE 2014
|c Sapporo
|d 2014-09-09 - 2014-09-12
|w Japan
245 _ _ |a Raspberry Pi based testbed verifying TrueTime network model parameters forapplication in distributed active turbulent flow control
260 _ _ |c 2014
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1421058847_25618
|2 PUB:(DE-HGF)
|x After Call
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The total drag of transport systems such as airplanes, ships and/or trains is primarily determined by frictiondrag. At high Reynolds numbers (< 104) transversal surface waves are a promising approach for active drag reduction.For the application in airplanes or ships a large scale distributed real-time actuator and sensor network is required in orderto provide a connection between a global flow control and the distributed actuators and sensors. For the developmentof this network we established a network model based on Simulink and TrueTime. To determine the network- andtransmission-parameters for the model we set up a Raspberry Pi based testbed as a physical representation of a first smallscale model. Using this testbed the parameters for the TrueTime network model have been retrieved. With this approachwe assure a link between the large scale model and the later microcontroller based real time actuator and sensor networkfor distributed active turbulent flow control.
536 _ _ |a 125 - Energy-efficient Processes (POF2-125)
|0 G:(DE-HGF)POF2-125
|c POF2-125
|f POF II
|x 0
700 1 _ |a Schlösser, Mario
|0 P:(DE-Juel1)133936
|b 1
|u fzj
700 1 _ |a Kaparaki, Maria
|0 P:(DE-Juel1)151363
|b 2
|u fzj
700 1 _ |a Srivastava, Suvansh
|0 P:(DE-Juel1)157610
|b 3
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 4
|u fzj
700 1 _ |a Schiek, Michael
|0 P:(DE-Juel1)133935
|b 5
|u fzj
773 _ _ |y 2014
856 4 _ |u http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6935311
909 C O |o oai:juser.fz-juelich.de:173348
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130625
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133936
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151363
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142562
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133935
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-112
|2 G:(DE-HGF)POF3-100
|v Energy Efficient Processes
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-125
|2 G:(DE-HGF)POF2-100
|v Energy-efficient Processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21