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Abstract

Soft colloids comprise a wide class of materials, ranging from linear polymers over polymeric assemblies, such as star polymers

and dendrimers, to vesicles, capsules, and even cells. Suspensions of such colloids exhibit remarkable responses to imposed flow

fields. This is related to their ability to undergo conformational changes and elastic deformations, and the adaptation of their

dynamical behavior. The rational design of soft particles for targeted applications or the unraveling of their biological function

requires an understanding of the relation between their microscopic properties and their macroscopic response. Here, mesoscale

computer simulations provide an invaluable tool to tackle the broad range of length and time scales. In this article, we discuss

recent theoretical and simulation results on the rheological behavior of ultrasoft polymeric colloids, vesicles, capsules, and cells.

The properties of both, individual particles and semi-dilute suspensions, are addressed.
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1. Introduction

The theoretical understanding of the rheological properties

of colloidal suspensions started in 1906, more than a hundred

years ago, with the now classical paper [1] of Albert Einstein,

in which he predicted the viscosity η of a suspension of hard

spheres to depend on the volume fraction Φ to leading order as

η = ηs

[

1 +
5

2
Φ + O(Φ2)

]

, (1)

where ηs is the solvent viscosity. This result has turned out to

be extremely useful, in particular because it does not only apply

to hard spheres in the regime ofΦ . 0.1, but also to much more

flexible objects like coiled linear polymers, when an appropriate

radius of the coil, the “hydrodynamic radius” RH , is employed

to determine the volume fraction.

This raises the question about the importance of shape and

deformability of soft colloids for the rheological behavior of

their suspensions. Is it sufficient to define an appropriate hydro-

dynamic radius and otherwise employ the theoretical descrip-

tion of hard spheres? What is the maximum volume fraction

to which such a description might be accurate and useful? Do

all soft colloids behave the same, or is the physical origin of

their softness important? What is the dependence of viscosity

on the elastic moduli of the soft colloids? What is the role of

shape, and how do shape and deformability together determine

the rheological properties of a suspension?
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There is a large range of applications, in which the rheologi-

cal behavior of soft-colloid suspensions plays an important role.

From a technological point of view, polymer suspensions are

probably the most dominant. However, even this long-studied

class of materials has seen several interesting developments in

recent years. For linear polymers, semi-dilute solutions have

been studied in detail, and the relation of orientation and elon-

gation of single chains to the macroscopic rheological proper-

ties has been elucidated. More importantly, polymers with a

more complex architecture have been investigated, such as star

polymers, dendrimers, and hyperbranched polymers.

A second class of soft objects are vesicles, capsules, and

cells. Capsules are also interesting for technological applica-

tions. However, the main focus of such suspensions is in the

biomedical field. Blood is a suspension of mainly red blood

cells, with a volume fraction of nearly 50%. Red blood cells

are of biconcave shape, and are highly deformable because they

have to squeeze through the tiny vessels of microvascular net-

work. Thus, the deformability of red blood cells, which may

get reduced in diseases such as malaria or diabetes, and its ef-

fect on blood viscosity are very important for blood flow. Simi-

larly, vesicles and capsules are used as model systems for cells,

but also as drug-delivery vehicles. They may differ from cells

by their shape and type of membrane elasticity, and thus show

different rheological properties.

To establish a relation between the structure of soft colloids

and their macroscopic rheological properties, the microscopic

understanding of their non-equilibrium properties is desired.

This is difficult to achieve experimentally. Here, computer sim-

ulations are the appropriate tool for microscopic insight into

soft matter and bio-fluid dynamics. In particular, recently de-

veloped novel mesoscale simulation approaches provide a de-
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tailed microscopic understanding, structure-function relation-

ships, and shed light on universal non-linear dependencies.

In general, soft colloids show much richer rheological prop-

erties than their hard counterparts [2]. This poses additional

challenges for the understanding and prediction of their be-

havior in semi-dilute and dense suspensions. However, it also

offers new opportunities in terms of applications, because the

variation of particle properties implies the tunability of rheo-

logical behavior over a wide range.

2. Simulation Techniques

During the last few decades, various mesoscale simulation

approaches have been developed to bridge the length- and time-

scale gap inherent in soft matter systems. Prominent examples

are the Lattice Boltzmann method (LB) [3–5], Dissipative Par-

ticle Dynamics (DPD) [6–8], and the Multiparticle Collision

Dynamics (MPC) approach [9–11], which is based on the Di-

rect Simulation Monte Carlo (DSMC) approach [12]. Com-

mon to these approaches is a simplified, coarse-grained descrip-

tion of the solvent degrees of freedom in order to achieve high

computational efficiency while keeping the essential features

of the microscopic physics on the length scales of interest—

specifically hydrodynamics. Embedded objects, such as poly-

mers or colloids are treated by conventional molecular dynam-

ics simulations.

2.1. Dissipative Particle Dynamics

In Dissipative Particle Dynamics (DPD), each particle rep-

resents a molecular cluster rather than an individual atom, and

can be thought of as a soft lump of fluid. The DPD system con-

sists of N point particles, which interact through three pairwise

forces denoted as conservative, dissipative, and random forces.

The conservative force controls fluid compressibility, while the

dissipative force supplies fluid viscosity. The DPD system is

kept at equilibrium temperature with a local thermostat, which

is formed by the pair of dissipative and random forces. The time

evolution of velocities and positions of particles is determined

by the Newton’s second law of motion.

2.2. Multiparticle Collision Dynamics

In the Multiparticle Collision Dynamics approach, the fluid

is represented by a large number of point particles, which move

in continuous space with a continuous distribution of veloci-

ties. Dynamically, the particles undergo alternating streaming

and collision steps. In the streaming step, they move ballisti-

cally with their respective velocities for a time interval, which

is denoted as collision time. Interactions between the particles

appear in the collision step. Thereby, the system is coarse-

grained into a grid of cubic cells, which define the collision en-

vironment. Only particles within a cell interact with each other

by a momentum-conserving stochastic process, which leads to

build-up of fluid correlations. Various collision rules have been

proposed [9, 13, 14], however, the originally proposed Stochas-

tic Rotation Dynamics (SRD) implementation is still preferen-

tially used [9]. Here, the relative fluid particle velocities within

a collision cell are rotated around a randomly oriented axis by

a defined angle. The algorithm exhibits unconditional stability

[9], incorporates thermal fluctuations and hydrodynamic inter-

actions [15]. Since it is particle-based, the MPC method can

easily be combined with other simulation approaches such as

molecular dynamics simulations. Moreover, mechanical ex-

pressions can be exploited to calculate, e.g., the stress tensor

[16], or to implement an appropriate temperature control [17].

2.3. Polymer Model

Typically coarse-grained models are used in simulations,

where polymers are represented as bead-spring or bead-rod chains

[18–21]. Stiffness is introduced by harmonic next-nearest neigh-

bor interactions. To build a star polymer, linear polymers are

connected to a common central particle. Thereby, the respec-

tive bond length might be chosen larger than that of other bonds,

in order to accommodate the required particles in the core re-

gion [22, 23]. Excluded volume interactions are modeled by a

truncated and shifted purely-repulsive Lennard-Jones potential.

2.4. Membrane models

Depending on a suspended particle of interest, a membrane

model may need to incorporate elastic and viscous properties

of a membrane, its bending resistance, and the viscosity con-

trast between inner and outer fluids. One class of models can

be referred to as continuum approaches, where membrane prop-

erties follow some constitutive relations. For example, in-plane

membrane shear elasticity can be described by Hookean or neo-

Hookean law, while out-of-plane deformations are controlled

by curvature elasticity [24–26]. Another class of membrane

models corresponds to the network model of a membrane, which

is built by a set of points which form a two-dimensional trian-

gulated network on a membrane surface [27–32]. These mod-

els typically incorporate bending and stretching resistance, and

area and volume constraints. In addition, viscoelastic mem-

brane properties can be mediated by springs with attached dash-

pots [31]. These network models assume a fixed connectivity;

however, there exist a network model for a fluidic membrane

(e.g., used for modeling fluid vesicles) which employs a dy-

namically triangulated network [27, 28, 33]. The fluidic mem-

brane combined with a fixed elastic network leads to a two-layer

membrane model [28, 33]. Recently, a model of two continu-

ous layers has been developed [34], which allows for sliding

and detachment of the two corresponding layers.

In continuum methods, coupling between membrane defor-

mation and fluid flow is often implemented through the im-

mersed boundary method (IBM) [24, 35] or front tracking method

(FTM) [25], which advect vertices with the local fluid velocity

and exert membrane forces onto the fluid flow. Alternatively,

fluid-structure interactions can be implemented through viscous

coupling. In particle-based methods, the no-slip boundary con-

ditions at the membrane surface are implemented through vis-

cous force coupling in DPD [31] or collisions in MPC [28] be-

tween fluid particles and membrane vertices.
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Figure 1: (a) Monomer density distribution in the flow-gradient plane for

Np = 3000, Nm = 250, i.e., c/c∗ = 10.38, and Wic = 569. The contour

lines for the densities 0.1 (outer) and 0.5 (inner) are highlighted to emphasize

the non-ellipticity of the shape. (b) Illustration of polymer stretching (right) and

recoiling (left). θ is the angle between the end-to-end vector and its projection

onto the flow-gradient plane and ϕ is the angle between this projection and the

flow direction. From Ref. [48].

3. Polymeric Particles

Studies of the rheological properties of polymer systems

have a long history, driven by the importance of these materi-

als in industrial applications. Correspondingly, there is a wide-

range of literature on various aspects of polymer solutions and

melts including experiments [36–38], theory [18, 20, 39], and

simulations [20, 40–42]. Here, we will mainly address com-

puter simulation studies of the polymer dynamics in dilute and

semidilute suspensions. Thereby, we want to cover linear poly-

mers and more complex structures such as star polymers and

dendrimers. There are other colloidal polymeric structures, e.g.,

hyperbranched polymers [43] or polymer networks as in micro-

gels. However, far less simulation studies have been performed

for such particles, most likely due to the significantly larger

number of ”monomers” necessary to model the branched struc-

tures. There is a wide-range of simulation studies on polymer

melts [39, 40, 44, 45] with emphasis on polymer entanglements.

The latter aspect goes beyond the scope of this article.

A broad spectrum of simulation approaches have been ap-

plied to study the non-equilibrium properties of linear polymers

in shear flow. The various techniques are specified, and the re-

spective references are provided in Ref. [46]. More recent stud-

ies employing MPC are presented in Refs. [22, 23, 42, 47–51]

3.1. Linear Polymers: Structure and Dynamics in Shear Flow

3.1.1. Structure and Dynamics in Shear Flow

The properties of linear polymers under shear flow have in-

tensively been studied during the last decade by various com-

puter simulation approaches (cf. Ref. [46]). The interest was

particularly triggered by experimental studies on DNA molecules,

which reveal large conformational changes and an intriguing

dynamics [52–55]. Figures 1 and 2 illustrate the monomer

density distribution of a polymer and their deformation under

flow as obtained from simulations. The polymers are stretched

along the flow direction, compressed along the orthogonal di-

rections, and exhibit a preferred orientation with respect to the

flow. These properties depend on shear rate in a particular man-

ner and are ultimately linked to the macroscopic rheological be-

havior of the polymers.

Typically, the extension—specifically in experiments [54,

56]—, the mean square end-to-end distances, or the radius of

gyration tensor components along and transverse to the flow

direction are considered. The respective longitudinal part in-

creases with increasing shear rate and slowly approaches a max-

imum, which is smaller than that corresponding to a fully stretched

chain [46, 52]. This is a consequence of the continuous end-

over-end tumbling dynamics with a non-stationary deforma-

tion. The transverse parts decrease with increasing shear rate

according to a power law. Similar to convective boundary lay-

ers, which occur in the Graetz-Levecque problem in thermal/mass

transport where the boundary-layer thickness is governed by

a balance of cross-stream diffusion and down-stream convec-

tion at high Péclet numbers [57], scaling arguments have been

provided for the dependence of the polymer radius of gyration

Rgy along the gradient direction on the shear rate γ̇ by balanc-

ing monomer convection and diffusion [19, 56, 58]. Typically,

the flow strength is characterized by the Weissenberg number

Wi = γ̇τ, where τ is the longest relaxation time of a poly-

mer. Equating the time for the transverse diffusive transport

of a monomer R2
gy/D, where D is the diffusion coefficient, with

that of the streamwise active transport over the length scale Rgx

of the deformed polymer Rgx/(γ̇Rgy), leads to [19]

Rgy ∼ γ̇−1/3. (2)

Thereby, it is assumed that the deformed polymer length is es-

sentially independent of the shear rate. Theory [46] and sim-

ulation results [47, 58] confirm the later assumption for large

shear rates. An alternative expression is obtained under the as-

sumption that a monomer drags along other monomers, i.e., its

diffusion coefficient is reduced by cooperative effects. Setting

D ∼ D0/Rgy, the above considerations yield Rgy ∼ γ̇−1/4 [59].

Both power-law dependencies have been observed in simula-

tions [56, 58, 59]. Thereby, the smaller exponent 1/4 is typi-

cally seen at smaller shear rates [56, 58, 59] and the larger at

high shear rates [19, 58, 59].

An essential aspect for the non-equilibrium shear response

is the finite length and inextensibility of a polymer, which is

implicitly assumed in the above scaling arguments. Exploiting

this fact, the dependence Rgy ∼ γ̇−1/3 can be derived theoreti-

cally in a different way [46]. For a long and flexible polymer, its

mean square radius of gyration is related to the longest relax-

ation time τ via R2
gy ∼ τ. The inextensibility constraint links the

various spatial components of the polymer [46], which implies

τ(1 + γ̇2τ2) = const. (3)

The quadratic dependence on the shear rate naturally appears

even in a lowest order perturbation theory for the polymer de-

formation along the flow direction, because R
2
g is independent
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of the direction of shear. Hence, τ ∼ γ̇−2/3, or Rgy ∼ γ̇−1/3.

The full theoretical expression indicates a slow cross-over from

an unperturbed polymer to the asymptotic behavior (2) at large

shear rates. Thereby, an intermediate regime can be approxi-

mated by the relation Rgy ∼ γ̇−1/4 over a small range of Rgy

values. Here, very accurate experiments and simulations are

required to separate the various scaling regimes or support the

gradual change of Rgy.

The preferred alignment angle can be calculated by the com-

ponents of the radius of gyration tensor, which yields in the

asymptotic limit of large shear rates the dependence γ̇−1/3 [46].

This is confirmed by simulations [47].

First direct experimental observations of the tumbling dy-

namics of DNA molecules have been presented in Ref. [56].

Various attempts have been undertaken to characterize the tum-

bling motion by a characteristic tumbling time τT and to find

the respective shear-rate dependence (cf. Ref. [48, 50]). Sim-

ulations and experiments provide a reasonable estimate of τT

by direct counting of end-over-end tumbling events [54, 56].

Alternatively, power spectral densities (PSD) have been deter-

mined for various correlation functions, which yield the sublin-

ear dependence τT ∼ γ̇−2/3 [47, 54, 58, 60–62]. This is consis-

tent with the results obtained by counting tumbling events, as

long as thermal motion is important [54, 62]. In the athermal

limit, a linear dependence on the shear rate is observed [62],

in agreement with expectations for Jeffrey orbits [63]. Vari-

ous other correlation functions have been considered, involving

fluctuations of extensions along the shear and gradient direc-

tions [54, 56, 60, 61] or those of the radius of gyration ten-

sor components along these axes [48], which provide typically

non-periodic functions [48, 50, 54, 56]. Here, the tight linkage

of the polymer deformations along the respective spatial direc-

tions during a tumbling cycle is important.

Tumbling can also be characterized by the distribution of

time intervals between successive tumbling events [55, 64–66].

Various criteria can be applied to distinguish tumbling events,

e.g., the time interval between comparable polymer conforma-

tions [55] — characterized by the polymer extension —, or that

between successive crossings of the end-to-end vector of the

shear-vorticity plane or the gradient-vorticity plane [65]. Since

the distribution of tumbling events is typically non-Markovian,

it can be rather complicated. However, the distributions should

decay exponentially for sufficiently long time intervals, where

the events are almost independent. From the exponential func-

tion, a decay time can then be extracted and identified as tum-

bling time. A priori, neither the equivalence of the various def-

initions is evident, nor is it clear that the same tumbling time or

even the same dependence on shear rate, at least qualitatively,

is obtained. However, recent theoretical calculations [46, 65]

and simulations [48–50] suggest that the decay time is closely

related to the stationary-state end-to-end-vector relaxation time

of a polymer and that the tumbling time exhibits the shear rate

dependence τT ∼ γ̇−2/3. The latter follows directly from the

above considerations, namely that τT = τ.

Computer simulation studies at extremely high Weissenberg

numbers unravel another non-linear phenomenon, where the

polymers shrink in size along the flow direction with increasing

Wi [59, 67, 68]. Thereby, the transverse components approach

a constant value. In the presence of hydrodynamics, the effect

is attributed to strong hydrodynamic drag forces, which lead

to recirculating flows inside a polymer coil and thus to com-

paction due to entanglement effects [68]. The very large shear

rates necessary for compactification are difficult to achieve in

experiments, which is the reason why the phenomenon has not

been observed so far.

So far, we have mainly addressed flexible polymers. Semi-

flexible polymers, where the persistence length is comparable

with the contour length exhibit additional features. Here, a

more or less gradual change of the behavior from that of a flex-

ible to a rodlike polymer is expected with increasing stiffness.

Indeed, rods also align with the flow and exhibit a tumbling mo-

tion. For the dynamical behavior, however, presence or lacking

of thermal noise plays a major role. Athermal rods in shear

flow exhibit so-called Jeffrey orbits, with a rotation frequency

which depends linearly on shear rate, i.e., the characteristic time

is τ ∼ γ̇−1 [62, 63, 69]. In the presence of noise, however, the

same dependence as for flexible polymers is obtained [62]. This

has been predicted by theory [46] and is observed in computer

simulations [54] and experiments [70]. However, recent theo-

retical studies suggest the relation τT ∼ γ̇−3/4 for the tumbling

time over a broad range of shear rates for semiflexible poly-

mers [71]. According to the above scaling relation, this would

also modify the shear thinning behavior. This aspect deserves

further studies. So far, investigations of semidilute solutions of

semiflexible polymers indicate a non-power-law decay of the

viscosity in the shear thinning region [72].

3.1.2. Rheological Properties in Shear Flow

As mentioned before, the average anisotropic shape of a

polymer determines its rheological behavior. This is illustrated

by the following scaling consideration [19]. The tensile force

Fx on the molecule along the flow direction is Fx ∼ ζγ̇Rgy, with

ζ being the friction coefficient. By the virial theorem, the stress

tensor is given by σxy ∼ FxRgy, and hence the viscosity by

η = σxy/γ̇ ∼ R2
gy ∼ γ̇−2/3 (4)

in the asymptotic limit of large shear rates, with the radius of

gyration of Eq. (2) [19]. This is consistent with more precise

analytical calculations [46] and agrees also with simulation re-

sults [19, 58]. Thus, the strong deformation of the polymer

leads to pronounced shear thinning, where the shear viscosity

decreases by a power-law η ∼ γ̇−ξ. Thereby, experiments and

simulations [18–20, 39, 46, 47, 55, 58, 73, 74] suggest expo-

nents ranging from 0.4 < ξ < 0.85 [18], i.e., a broad range of

exponents. This is partially explained by the broad crossover

between the zero-shear rate plateau and the limiting behavior

for γ̇ → ∞.

The first normal stress coefficient, defined as Ψ1 = (σxx −
σyy)/γ̇2 [18, 20], can be approximated by Ψ1 ∼ σxx/γ̇

2 ∼
FxRgxγ̇

2 ∼ RgyRgx/γ̇ to derive a scaling relation. As for the

derivation of Eq. (3), we set Rgy ∼ τ1/2 and Rgx ∼ γ̇τ3/2, which

leads to

Ψ1 ∼ τ2 ∼ γ̇−4/3 (5)
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in agreement with the more precise calculation in Refs. [18, 20,

46]. In contrast to the viscosity, the dependence in Eq. (5)

agrees very well with experiments for a broad range of polymer

solutions [18, 56, 58] and a wide spectrum of simulations [19,

47, 58, 74]. This could be related to the fact that normal stresses

are easier to determine than shear stresses.

The second normal stress coefficient Ψ2 = (σyy − σzz)/γ̇
2

is determined by hydrodynamic and excluded-volume interac-

tions [18, 20, 47], and hence depends significantly on concen-

tration. For semidilute solutions, our simulations yield the de-

cay |Ψ2| ∼ Wi
−4/3
c of the magnitude of Ψ2 (Ψ2 is negative) with

increasing shear rate, i.e., it decays with the same exponent as

Ψ1 [47]. At low concentrations, we could not extract a clear

power-law dependence, since the values of Ψ2 decrease signifi-

cantly with decreasing concentration.

We would like to emphasize once more the intimate connec-

tion between the structural, dynamical, and rheological prop-

erties of flexible polymers in shear flow. The above scaling

considerations, and more precise analytical considerations [46],

show that all these quantities depend on the relaxation behavior

of the polymer, which in turn is determined by the applied shear

flow. Hence, here, we established a relation between the micro-

scopic properties of the system and its macroscopic behavior.

At small shear rates, a polymer solution is in the Newto-

nian regime and the viscosity is independent of γ̇. However, the

zero-shear viscosity η0 depends on the polymer concentration,

which is often presented in the form [47]

η0 = ηs

(

1 + [η] + kH([ηc])2 + . . .
)

. (6)

Here, [η] is the intrinsic viscosity, c is the polymer concen-

tration, and kH is the Huggins coefficient [36, 47]. The term

kH([η]c)2 depends on hydrodynamic interactions [47]. For flex-

ible polymers, kH is in the range of 0.2 − 0.8 and depends on

the solvent quality [47]. Typically, the value kH = 0.3 is found

experimentally for flexible polymers in good solvents [47]. Fig-

ure 3 shows the dependence of the zero-shear viscosity on con-

centration for polymers of various lengths [47]. The solid line

indicates the power-law increase

η0 = ηs (c/c∗)1/(3ν−1) (7)

of η0 as predicted by a blob model of the polymer [75]. The

inset plot depicts the relative viscosity

ηR =
η0 − ηs

ηs[η]c
= 1 + kH[η]c + . . . . (8)

The comparison with the simulation data for various polymer

lengths yields the coefficient kH = 0.35 [47], which is in close

agreement with the experimental result.

Hard sphere suspensions obey the Einstein relation (1). As

discussed in Ref. [47], the same relation applies to dilute poly-

mer solutions, when the hydrodynamic radius of a polymer is

used to define the volume fraction.

As for dilute systems, a polymer in a semidilute suspension

is aligned, deformed, and thus exhibits shear thinning. An ex-

ample of the polymer contribution to the viscosity is displayed

in Fig. 4 for polymers of various lengths Nm and various con-

centrations. A concentration independent universal behavior

Figure 2: Snapshot of a systems with 800 polymers of length Nm = 250 for

the Weissenberg number Wic = 184. For illustration, some of the chains are

highlighted in red. From Ref. [48].
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Figure 3: Dependence of the zero-shear viscosity on the scaled concentration

c/c∗ for the polymer lengths Nm = 40 (N), Nm = 50 (•), and Nm = 250 (�).

The solid line indicates the power-law (c/c∗)1/(3ν−1) with ν = 0.6. In the inset,

ηR − 1, Eq (7), is shown as function of [η]c for Nm = 40 (N) and Nm = 50 (•);
the slope of the solid line is 0.35, which corresponds to the Huggins constant

of polymers in good solvent. From Ref. [47].

is obtained, when the respective quantities are represented as

function of the concentration-dependent Weissenberg number

Wic = γ̇τc, with the concentration-dependent longest relaxation

time τc of a polymer. Thus, the same (asymptotic) scaling re-

lations as for a dilute system apply for a semidilute system. A

closer look, however, shows that partial screening of hydrody-

namic interactions with increasing polymer concentration leads

to different relaxation behaviors of the end-to-end vector com-

ponents along the various spatial directions, where the relax-

ation times obey τx ≤ τy ≤ τz [50].

3.2. Star Polymers

Linking polymers at a common center by one of their ends

leads to novel polymeric materials with tunable properties. Two

extreme limits of such particles are colloidal particles with short

grafted polymers, e.g., polymeric latex spheres of varying graft-

ing density [76, 77], or a small connecting center with compa-

rable long polymer arms—star polymers [78, 79]. Here, we
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Figure 6: Simulation snapshot of a solution of star polymers with f = 50,

c/c∗ = 1.46, and the Weissenberg number Wic ≈ 102. Only star polymers with

their centers in a slice of thickness of 3Rg0 parallel to the flow-gradient plane

are shown, where Rg0 is the radius of gyration at equilibrium. Multiple colors

are used to distinguish the various star polymers more easily. From Ref. [23].

ter scales as γ̇−2/3 for Wic > 10, as for linear polymers. Along

the shear and gradient directions, the relaxation dynamics is

tightly coupled and the respective center-to-end vector compo-

nent correlation functions exhibit a damped oscillatory behavior

[51].

The rotation of the star polymer also affects the fluid flow

field. Specifically, the flow lines in the interior of the star poly-

mer are closed, i.e., the internal fluid is screened from the outer

one [93]. The rotation dynamics can be quantified by an angu-

lar rotation frequency ωz [23, 88]. For shear rates φ f Wic ≪ 1,

the frequency assumes the expected value |ωz| = γ̇/2. For large

shear rates, the magnitude of the rotation frequency increases

as |ωz| ∼ γ̇ζ with increasing γ̇. Thereby, the exponent ζ de-

pends strongly on concentration. In dilute solution, we find

ζ ≈ 0 almost independent of the functionality [23, 88], whereas

above the overlap concentration ζ ≈ 0.35. Simulations of dilute

systems without hydrodynamic interactions yield ζ ≈ 0.4 [93].

Thus, the lack or presence of hydrodynamic interactions has a

significant influence on the star’s rotational dynamics. Qualita-

tively, an increase of the polymer concentration has the same ef-

fect on ωz as suppression of hydrodynamic interactions. Hence,

we interpret the increase of ζ as an indication of screening of

hydrodynamic interactions in star polymer solutions at concen-

trations far above the overlap concentration.

The shear-rate dependence of the rotation frequencies ex-

tracted from the simulation data for various functionalities can

be reproduced well by the Keller-Skalak model (KS) for vesi-

cles [94] over a broad range of shear rates [23]. Thereby, we

identify the axis of the effective ellipsoid with the square root

of the respective major axis of the radius of gyration tensor [23].
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Figure 7: Normalized shear stress σxy as a function of Wic for the concen-

trations c/c∗ = 0.2, 0.29, 0.49, 0.68, 0.97, 1.46, 2.92 (top to bottom) and

the functionality f = 50. The dashed and solid lines indicate the power-laws

σxy ∼ Wic and σxy ∼ Wi0.6c , respectively. The inset displays the dependence

of the scale factor σ0
xy on concentration, where RH is the hydrodynamic radius.

From Ref. [51].

The diffusive dynamics of the center-of-mass of a star poly-

mer is significantly slowed down with increasing concentration

at equilibrium. However, under shear flow, the dynamics is en-

hanced, and we find diffusion coefficients along the gradient

and vorticity direction, which grow by an order of magnitude,

when we increase the Weissenberg number from unity to 102

[51]. A similar behavior has been reported for the diffusive dy-

namics of colloidal particles in glasses [97, 98]. At higher con-

centration, close spatial proximity of the star polymers leads to

caging. The respective star polymers rattle in their cage un-

til a certain rearrangement of the neighborhood opens a route

to escape. Above the ”escape time”, the star polymers exhibit

Brownian motion. Shear promotes fast and considerable re-

arrangements of the star polymers, particularly since they are

dragged along the flow direction by shear. Thus, the star poly-

mers can escape easily from the local neighborhood, which is

reflected in the shear enhanced dynamics.

3.2.2. Rheological Properties in Shear Flow

The flow induced deformation and alignment of star poly-

mers determines the rheological properties of the suspension.

Figure 7 illustrates the dependence of the stress tensor on the

Weissenberg number and concentration. For Wic > 1, the shear

stress strongly depends on the concentration. The sublinear

increase of the shear stress implies shear thinning of the sus-

pension. Simulations reveal a universal dependence of η on

φ f Wic(> 1) for low concentrations to be independent of func-

tionality [51]. Here, the viscosity can be described by the power-

law η ∼ γ̇−0.3 for φ f Wic > 1. For higher concentrations, again a

universal curve is obtained for various functionalities, but with

the steeper slope of η ∼ γ̇−0.4 [51]. Interestingly, simulations

did not show a zero shear-rate plateau for concentrations sig-

nificantly above the overlap concentration. This points toward

the presence of yield stress in such systems.
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Zero-shear viscosities η0 for star polymers of various func-

tionalities from experiments and simulations are displayed in

Fig. 8 [76]. The zero-shear viscosity increases rapidly with

concentration. The simulation data are well described by the

relation η0/ηs = 2.5φ + 6.2φ2, which implies a faster increase

than that for linear polymers, where η0/ηs = 2.5φ + 6.25kHφ
2

with the Huggins coefficient kH ≃ 0.3 [47]. Furthermore, the

zero-shear viscosity as a function of c/c∗ depends only very

weakly on the arm length. The figure shows a very consistent

trend of an increase of the zero-shear viscosity with increasing

functionality at constant concentration c/c∗, and demonstrates

the crossover of star-polymer properties from ultra-soft to hard-

sphere colloids with increasing f . Other simulations yield a

near power-law increase of the star-polymer zero-shear rate vis-

cosity in the range 0.1 < c/c∗ < 4 for functionalities in the

range 10 ≤ f ≤ 50 [51].

The viscosity of star-polymer solutions of very high func-

tionality f ≃ 390 has also been measured experimentally at

concentrations in the fluid and glassy phases [92]. In the semidi-

lute regime, the shear stress shows a linear increase at low shear

rates, followed by a less pronounced growth with an effective

exponent of approximately 0.5; this effective exponent decreases

with increasing concentration [92]. Both observations are con-

sistent with our simulation results. The exponent of the power

law of the shear stress for intermediate Weissenberg numbers

is important, because a value larger than unity signals shear

banding. Such a behavior has indeed been predicted for con-

centrated solutions [99]. On the basis of our simulations, no

shear banding is predicted for stars with f ≤ 50 in the investi-

gated concentration range. We expect that considerably larger

functionalities are necessary to observe shear banding.

The first normal stress coefficient and the magnitude of the

second one decrease with increasing shear rate [42, 51]. Thereby,

Ψ1 exhibits the dependence Ψ1 ∼ (φ f Wic)−1 on the shear rate

and functionality ( f & 10). This exponent is different from

that of flexible polymers. The reason for the observed differ-

ence is yet unexplained. We also find quite pronounced second

normal stress coefficients. They decrease as |Ψ2| ∼ (φ f Wic)−4/3

for φ f Wic > 1, i.e., show the same exponent as concentrated

polymer solutions. Since excluded-volume interactions mainly

determine Ψ2, the large magnitudes of the second normal stress

differences for dilute and concentrated systems point toward

strong excluded-volume interactions, both intramolecular at low

concentrations, as well as intermolecular at higher concentra-

tions.

3.3. Dendrimers

Dendrimers form another class of ultrasoft colloids with

tunable properties [100]. As for star polymers, their dynami-

cal and rheological properties strongly depend on the structural

unit, from which the hierarchical entity emerges. However, so

far comparably little is known about their rheological proper-

ties.

3.3.1. Structure and Dynamics in Flow

Dendrimers are deformed and aligned by a shear flow [101,

102], with a weak compression along the gradient direction and

an even weaker effect along the vorticity direction. The elon-

gation in the flow direction depends on the dendrimer rigidity.

The simulations of Ref. [101] indicate a power-law increase in

the range 0.1 < Wi < 50, with a slope somewhat smaller than

unity. This is in contrast to linear and star polymers, where the

elongation increases initially quadratically [23, 47]. Therefore,

a suitable relaxation time for the determination of the Weis-

senberg number seems to be

τ =
ηl3(2G + 1)3ν

kBT
, (9)

where G is the number of generations, l is the bond length, and

ν = 0.588 is the Flory exponent [101].

3.3.2. Rheological Properties

Shear simulations of dendrimers reveal shear thinning at

sufficiently high shear rates with an approximate power-law

decay γ̇−ζ [43, 102, 103]. For the exponent, the values ζ =

1/3 [103] and ζ = 0.55 − 0.6 [102] have been reported. In

Ref. [102], the exponent is found to be independent of topology

by comparing linear polymers with dendrimers. The viscosity

curves normalized by the zero-shear viscosity for dendrimers

and linear polymers collapse as function of the reduced shear

rate [η]Mηs/(NAkBT )γ̇, where M is the molecular weight and

NA is the Avogadro constant.

The dendrimer zero-shear viscosity [η0] exhibits a molecu-

lar weight dependence, which is very different from that, e.g.,

of linear polymers [102, 103]. For a dendrimer, [η0] increases

initially at low molecular weight, passes through a maximum,

and decreases for a large number of monomers. In contrast, for

linear polymers, the viscosity increases in a power-law manner.

Shear-thinning of dendrimers has been also found in simula-

tions of elongational flow [43].
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deformations in flow [133] showing good agreement up to mod-

erate capsule deformations. At large deformations a non-linear

behavior is expected to have a contribution. More recent exper-

iments on polyamide microcapsules in shear flow [131, 132]

have shown shape oscillations and membrane wrinkling. The

results have been fitted by the theory [133], even though the the-

ory assumes a steady capsule shape without oscillations. The

instability of capsule shape and wrinkling in shear flow has

been theoretically investigated in Ref. [134], where a critical

shear rate for the instability and the wavelength of wrinkling

have been predicted.

Dynamics of capsules in shear flow is also characterized by

the two states: tumbling and tank-treading. The transition can

be triggered by a viscosity contrast between the inner and outer

fluids similar to that for vesicles, which has been first described

by the Keller-Skalak theory [94]. The KS theory assumes a

fixed path for a tank-treading capsule, and therefore, does not

reflect shape oscillations. Improved theories [144, 145] for red

blood cells (or also capsules) have added an energy barrier for

tank-treading due to membrane elasticity. For a spherical cap-

sule this barrier becomes very small, while it increases as a cap-

sule departs further from a spherical shape. Thus, tumbling-to-

tank-treading transition may also depend on the elastic barrier

for non-spherical capsules, for instance RBCs. Recent theories

[135, 137] have also included membrane oscillations, which ap-

pear to be crucial for correct prediction of capsule dynamics.

When cell shape deformation is also taken into account, two

types of oscillation modes coexist: one induced by the shape de-

formation similar to fluid vesicles and the other induced by the

tank-treading energy barrier [146]. For non-spherical capsules

accompanied by a local energy minimum, coupling of these two

modes generates a complicated phase behavior.

4.2.2. Rheology of capsule suspensions

The rheology of capsule suspension has been investigated

in a number of simulations [26, 139–142] with a common con-

clusion that capsule suspension exhibits shear thinning. Also,

suspension’s viscosity strongly depends on the volume fraction

of capsules. Rheology of a dilute capsule suspension has been

studied in Ref. [139] showing a shear-thinning behavior. How-

ever, the dependence of suspension’s viscosity on the viscos-

ity ratio (λ) between inner and outer fluids surrounding capsule

shows a non-trivial behavior. An initial increase of λ from unity

leads to a decrease of the suspension’s viscosity, while a further

increase in λ may result in an increase of suspension’s viscos-

ity. This effect is related to the transition from a tank-treading

behavior of capsules to tumbling at high enough values of λ.

The rheology of capsule suspensions at moderate concen-

trations has been investigated in Refs. [140–142]. Apart from a

shear-thinning behavior, microstructure of the suspension have

been discussed including also single capsule properties such as

orientation and deformation. The measurements of the normal

stress differences [140, 141] have shown an unexpected behav-

ior, such that the first normal stress difference is negative at low

shear rates and becomes positive as the shear rate is increased.

The numerical results of Ref. [141] have also indicated that at

high enough concentration of capsules a yield stress may ap-

pear even without any aggregation interactions between cap-

sules. The study in Ref. [142] have considered inertial effects

on the suspension’s rheology in Poiseuille flow. The apparent

viscosity of capsule suspension may decrease with an increas-

ing Reynolds number for relatively soft capsules. This effect is

related to strong capsule deformations.

4.3. Blood Cells and Blood Flow

Red blood cells (RBCs) combine the properties of both vesi-

cles and capsules with the membrane comprising viscoelastic

and area-preserving properties with a finite bending stiffness.

Human RBCs have a biconcave shape with a diameter rang-

ing between 6 µm and 8 µm and a thickness of about 2 µm. A

RBC membrane is constructed from a lipid bilayer with an at-

tached spectrin-protein cytoskeleton, which provides integrity

for a RBC since it is subject to substantial deformations in

microcirculatory blood flow. The inner fluid of a RBC is a

hemoglobin solution, which can be considered nearly Newto-

nian and is about 5 times more viscous than the blood plasma.

Mimicking RBC structure, a complete RBC model needs

to include elastic energy of the spectrin network, a curvature

energy to describe bending resistance of the lipid bilayer, con-

servation of both the cell area and volume to represent the area

incompressibility of the lipid bilayer and incompressibility of a

cytosol, membrane viscosity, and the viscosity contrast between

the cytosol and blood plasma. The RBC biconcave shape cor-

responds to the reduced volume V∗ = V0/(
4
3
πR3

0
) with V0 being

the RBC volume and R0 =
√

A0/(4π) = 3.25 µm, where A0 is

the area of a RBC. The reduced volume of a healthy RBC is

equal to about V∗ = 0.6. More details on RBC and blood flow

modeling can be found in recent reviews [147–150].

4.3.1. Shapes and dynamics of single RBCs in flow

The behavior of single RBCs in flow inevitably affects blood

rheological properties. Deformation and dynamics of RBCs

have been investigated experimentally in various flows includ-

ing shear flow [145, 151, 152] and tube or Poiseuille flow [153,

154].

Similar to the dynamics described for vesicles and capsules,

RBCs in shear flow exhibit tumbling and tank-treading motion

[145, 151, 152]. An experimental study [151] has shown that

the existence of these two states is due a RBC minimum energy

state such that a certain energy barrier has to be exceeded in

order for a RBC to tank-tread. Similarly to vesicles and cap-

sules, this transition can be also induced by the viscosity con-

trast between the cytosol and the suspending fluid, where the

latter one is normally varied in experiments. Furthermore, a

tank-treading RBC is also subject to a swinging motion around

the tank-treading inclination angle [145].

The first theoretical predictions of RBCs dynamics [144,

145] have been derived from the Keller-Skalak theory for vesi-

cles [94] by adding an elastic energy barrier for the tank-treading

motion. These theories have qualitatively captured the tumbling-

to-tank-treading transition; however, at high enough viscosity

contrast (λ & 3 − 4) theoretical predictions led to a relatively

wide region of an intermediate dynamics with a co-existence
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of both tumbling and tank-treading states. In contrast, experi-

ments [145, 152] and numerical simulations [30, 31, 34, 146,

155] of RBC dynamics in shear flow have not provided any

evidence for the existence of the intermittent region. Recent

theories and simulations [135, 137] were able to resolve this

issue and found that the prediction of the intermittent region

in previous works has been due to the assumption of a fixed

tank-treading path of RBCs. Thus, RBCs deformation during

tank-treading is important. There also exist breathing dynamics

[155] around the tumbling-to-tank-treading transition, which is

characterized by strong membrane deformation. Recent experi-

ments [152] and simulations [156] have shown the existence of

another dynamical state called rolling, where a RBC just rolls

in shear flow with the orientation along the vorticity direction.

This transition has been attributed to anisotropic properties of

a membrane leading to a rolling state, in which RBC defor-

mations might be reduced. Finally, RBC simulations with a

non-zero membrane viscosity [31] have shown that this prop-

erty might be essential to quantitatively capture RBC dynamics

in shear flow.

RBCs in Poiseuille flow show rich behavior characterized

by various shapes including parachutes and slippers [28, 30,

33, 153, 154, 157–161]. Parachutes correspond to a symmetric

shape similar to a semi-spherical cap which flow in the center

of a tube practically without any membrane motion. In contrast,

slippers are asymmetric RBCs in tube flow whose membrane is

in motion (e.g., tank-treading). There exist two types of slip-

pers observed in experiments, a non-centered slipper [154] and

centered slipper [153], where the latter may closely resemble

parachute shape. Slipper shapes have been also simulated us-

ing 2D models [158, 160] and in 3D [161].

2D simulations in slits [158, 160] have been used to pre-

dict a phase diagram of various shapes including parachutes,

slippers, and a snaking dynamics, depending on RBC confine-

ment and flow strength. The snaking dynamics is referred to an

oscillating RBC dynamics near the tube center. Recent 3D sim-

ulations [161] have also resulted in a diagram of RBC shapes

in tube flow, which is only qualitatively similar to the diagram

in 2D. Figure 11 presents the RBC shape diagram in 3D for

different flow rates and confinements. The parachute shape is

mainly found at strong confinements and high flow rates, while

off-center slippers are predominantly observed at low confine-

ments. At low enough flow rates off-center tumbling RBCs

are also found, which are due to the existence of the tumbling-

to-tank-treading transition described above. This region is not

present in 2D simulations [158, 160], since this transition can-

not be captured by a 2D model. At small shear rates γ̇∗, a

snaking region is observed with a RBC performing a periodic

oscillatory motion near the center line. However, in contrast

to snaking in 2D [158, 160], the snaking motion in 3D is fully

three dimensional and may have an orbital drift, which is sim-

ilar to a RBC rolling motion in shear flow [152, 156]. Another

prominent difference between the phase diagrams in Fig. 11 and

in 2D simulations [158, 160] is the existence of the “confined

slipper” in 2D at high confinements which is absent in 3D. Slip-

pers at high confinements in 3D are suppressed due to the cylin-

drical shape of a tube, since a confined slipper would have to

follow the wall curvature, which is energetically unfavorable.

4.3.2. Blood rheology

Blood rheological characteristics are determined by the prop-

erties and dynamics of RBCs due to their high volume fraction

or hematocrit. Blood rheology has been measured in a num-

ber of experiments [162–164]. Early experiments [162, 165]

have found that RBCs in whole blood (i.e., freshly drawn and

stabilized against coagulation) are able to aggregate into struc-

tures called “rouleaux”, which resemble stacks of coins. The

aggregation between RBCs is mediated by the plasma proteins

[165], which has been verified by an addition of fibrinogen to

blood [165]. Rouleaux structures are very fragile and form at

rest or at sufficiently slow flows. An increase of shear rate

would lead to a break-up of the rouleaux structures resulting

eventually in a fully dispersed RBC suspension. The aggrega-

tion process is reversible and rouleaux can re-form at low shear

rates. Due to aggregation interactions between RBCs, whole

blood shows a non-zero yield stress (a threshold stress for flow

to begin) [162, 166].

The viscosity of whole blood and of non-aggregating RBC

suspension has been measured in experiments [162–164] and

modeled in simulations [32, 167]. Figure 12 presents the com-

parison of the relative viscosity (the RBC suspension viscos-

ity normalized by the viscosity of the suspending media) from

simulations and experiments. Blood viscosity exhibits a shear-

thinning behavior. A qualitatively similar behavior has been

found for capsule suspensions [139, 140] and for a suspension

of RBC-like particles [26, 141, 159]. Clearly, a tremendous in-

crease of viscosity at low shear rates is due to the aggregation

between RBCs. RBC aggregation has also been investigated for

two-cell and multiple-cell aggregates [168, 169] with a focus on
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[164]. Non-aggregating RBC suspension: red circles - Chien et al. [163]; red

squares - Skalak et al. [164]. From Ref. [148].

their behavior in flow. The first attempts to estimate the depen-

dence of viscosity on RBC aggregation [24] were not able to

reproduce blood rheology due to a very small simulated system

of up to ten aggregated RBCs.

Matching of the viscosity predictions in simulations [167]

with the experimental measurements [162–164] allows one to

calibrate RBC aggregation interactions. Then, a step further is

a direct calculation of aggregation forces between two RBCs, a

property which has never been measured in experiments. Sim-

ulations [167] predict that the force required for a break-up of

two RBCs in the normal direction is in the range of 3.0 pN to

7 pN, while the tangential force needed for a sliding break-up

is in the range of 1.5 pN to 3 pN. A fluid shear stress required

for RBC disaggregation has been measured in shear flow ex-

periments [170], and lies between 0.01 Pa and 0.1 Pa, while

simulations result in a value of about 0.02 Pa.

Existence of a non-zero yield stress in whole blood is at-

tributed to rouleaux structures [162, 166]. A direct confirmation

of yield stress is not possible in both experiments and simula-

tions, and therefore, available measurements are usually extrap-

olated to zero shear rate, which has been done, for example, for

blood in Ref. [165]. The extrapolation for soft capsules and

cells is often convenient to perform in the Casson coordinates

(γ̇1/2,τ1/2
xy ), where γ̇ is the shear rate and τxy is the shear stress

[171]. Figure 13 shows simulated data for Ht = 0.45 [167] in

Casson coordinates. Extrapolation to zero shear rate clearly re-

sults in a non-zero yield stress for whole blood, while for a non-

aggregating RBC suspension yield stress vanishes. Simulations

[167] predict τy to be approximately 0.0017 Pa, while experi-

mental measurements [162] lie between 0.0015 and 0.005 Pa.
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Figure 13: RBC aggregation and yield stress. A Casson plot with a polynomial

fit showing the extrapolated intercept τy for simulated suspensions with (dashed

lines) and without (solid lines) aggregation at Ht = 0.45. From Ref. [148].

Yield stress in a RBC suspension may also exist at very high

(non-physiological) hematocrit values [141].

The non-Newtonian viscosity and yield stress in blood can

be connected to RBC membrane properties, dynamics, and ag-

gregation interactions. Measurements on a single cell level in a

RBC suspension may be difficult or unfeasible in experiments,

while simulations are ideal for that. The local microstructure

of blood can be described by the radial distribution function

(RDF) of RBC centers shown in Fig. 14(a) [167]. No signif-

icant structures are found for the non-aggregating case, while

structures of 2-4 cells can be detected in whole blood for low

shear rates. However, any microstructure is completely lost

at high shear rates, and therefore the shear-thinning of a non-

aggregating RBC suspension is not related to microstructural

changes. This also clearly indicates that the aggregation inter-

actions between RBCs are responsible for the steep increase in

blood viscosity at low shear rates and for yield stress, since

larger rouleaux structures have to be destroyed for blood to

flow.

Deformation and dynamics of single RBCs within the sus-

pension is illustrated in Figs. 14(b) and (c) for different shear

rates [167]. Tumbling of RBCs at low shear rates is supported

by the nearly constant RBC asphericity of about 0.154 (equilib-

rium value for a discocyte shape) and by the broad orientation-

angle (θ) distribution in Fig. 14(c). Also, RBC tumbling is par-

tially hindered in non-aggregating suspensions due to crowding

in comparison with the theoretical prediction for tumbling of

a single RBC. In contrast, RBC aggregation results in a nearly

uniform orientation-angle distribution at low shear rates. At

high shear rates, RBCs are subject to tank-treading dynamics

supported by a narrow θ distribution in Fig. 14(c). A significant

increase of the asphericity in Fig. 14(b) also indicates strong

RBC elongation at high shear rates. In the range of shear rates,

between 5 s−1 and 200 s−1, RBCs strongly deform which is
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with sample snapshots of RBC conformations. (a) RBC suspension’s structure

characterized by the radial distribution function. (b) RBC asphericity distribu-

tions to describe cell deformations through the deviation from a spherical shape.

The asphericity is defined as [(λ1 −λ2)2 + (λ2 −λ3)2 + (λ3 −λ1)2]/(2R4
g), where

λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the gyration tensor and R2
g = λ1 + λ2 + λ3.

The asphericity for a RBC in equilibrium is equal to 0.154. (c) Orientational

angle distributions for various shear rates. The RBC orientational angle is de-

fined by the angle between the eigenvector V1 of the gyration tensor and the

flow-gradient direction (y). The theoretical prediction curve corresponds to the

orientational angle distribution of a single tumbling RBC in shear flow calcu-

lated using the theory in Ref. [145]. From Ref. [167].
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Figure 15: Simulated relative apparent viscosity of blood [174] in comparison

with experimental data [173] for different HT values and tube diameters. From

Ref. [148].

indicated by a smaller RBC asphericity than that in equilib-

rium (Fig. 14(b)). Thus, in this range RBCs attain on average

a more spherical shape, which leads to shear thinning through

a reduction of shear stresses due to lower tumbling constraints

in comparison with the biconcave RBC shape. Moreover, the

tumbling-to-tank-treading transition further decreases the shear

stresses resulting in shear thinning.

4.3.3. Blood flow

Behavior of RBCs and blood rheological properties govern

the flow of blood in microvessels. A well-known effect which

describes a dependence of the apparent blood viscosity on ves-

sel diameter is the Fahraeus-Lindqvist effect [172] which pre-

dicts a decrease in the effective blood resistance with decreasing

tube diameter [173]. The apparent viscosity is found as

ηapp =
π∆PD4

128QL
=
∆PD2

32v̄L
, (11)

where D is the tube diameter, Q is the flow rate, and ∆P/L is

the pressure gradient in a tube of length L. For convenience, we

normalize the apparent viscosity by the plasma viscosity to ob-

tain relative viscosity of blood as ηrel = ηapp/ηo, where ηo is the

plasma viscosity. Figure 15 compares simulation results [174]

against the empirical fit to experiments [173]. The Fahraeus-

Lindqvist effect serves as one of the validation tests for blood

flow models, and this test has been also performed in other sci-

entific investigations [25, 35, 175–177].

The Fahraeus-Lindqvist effect arises from the behavior of

RBCs in blood flow. In Poiseuille flow, RBCs migrate to the

tube center due to a hydrodynamic lift force [178]. The migra-

tion of RBCs yields a RBC free layer next to the wall, which

effectively can reduce average blood flow resistance (or viscos-

ity). Thus, the thickness of the RBC free layer is directly asso-

ciated with the Fahraeus-Lindqvist effect. The RBC free layer
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has been measured experimentally [179, 180] and in simula-

tions [35, 174–177].

The structure and dynamics of RBCs in blood flow has also

been investigated in simulations [33, 176, 177]. In microcap-

illaries with a diameter comparable with the RBC size, RBCs

may have a disordered configuration, form a train of parachutes,

or get arranged into a zig-zag structure [33, 181, 182], depend-

ing on their concentration and flow rate.

5. Discussion

The considerable amount of work on the dynamics and rhe-

ology of soft colloidal particles under flow has revealed both

generic and very specific aspects of these systems. For exam-

ple, two generic aspects are the tank-treading and tumbling mo-

tion of individual particles in solution, and the shear-thinning

behavior of semi-dilute suspensions. Tank-treading occurs for

star polymers, and for vesicles, soft capsules, and red blood

cells with small viscosity contrast; tumbling motion is found

for linear polymers, and vesicles, stiff capsules, red blood cells

with large viscosity contrast. Shear thinning is related to the

deformability and alignment of soft particles in flow, and the

break-up of aggregates in the case of attractive interactions, and

is therefore a property which is shared by all soft-particle sus-

pensions.

However, many properties are quantitatively or qualitatively

different, and are very specific for certain systems. For exam-

ple, the control and variation of the viscosity of the internal

fluid of vesicles, capsules and cells has no counterpart in poly-

meric systems. Therefore, the viscosity contrast can only be

employed in the former case to tune rheological properties. A

second example is the oscillatory dynamics at the boundary be-

tween tank-treading and tumbling, which is found for vesicles,

capsules and red blood cells. In the former case, this is related

to the dependence of the rotational force on the instantaneous

elongation of the particle, while in the latter case it is due to the

non-spherical, elastically anisotropic shape of the membrane.

This strongly limits the use of vesicle models to describe the

behavior of capsules and red blood cells!

However, the dependence of the dynamical and rheologi-

cal properties of soft particle suspensions on several parameters

like the polymer length, polymer stiffness, monomer density

within macromolecules, internal viscosity, membrane bending

rigidity, membrane shear modulus, particle shape, and parti-

cle interactions, offers entirely new possibilities for tuning flow

properties. More work is needed in the future to explore the

full application potential of these systems. This also requires

deeper insights into the relation between microscopic proper-

ties and the emergent macroscopic behavior.
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