000173351 001__ 173351 000173351 005__ 20220930130036.0 000173351 0247_ $$2doi$$a10.1111/1751-7915.12236 000173351 0247_ $$2ISSN$$a1751-7907 000173351 0247_ $$2ISSN$$a1751-7915 000173351 0247_ $$2Handle$$a2128/8432 000173351 0247_ $$2WOS$$aWOS:000350345300006 000173351 0247_ $$2altmetric$$aaltmetric:21824508 000173351 0247_ $$2pmid$$a25488698 000173351 037__ $$aFZJ-2014-06761 000173351 082__ $$a570 000173351 1001_ $$0P:(DE-Juel1)157757$$aKortmann, Maike$$b0 000173351 245__ $$aA chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level 000173351 260__ $$aOxford$$bWiley-Blackwell$$c2015 000173351 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457697378_319 000173351 3367_ $$2DataCite$$aOutput Types/Journal article 000173351 3367_ $$00$$2EndNote$$aJournal Article 000173351 3367_ $$2BibTeX$$aARTICLE 000173351 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000173351 3367_ $$2DRIVER$$aarticle 000173351 500__ $$aBiotechnologie 1 000173351 520__ $$aCorynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum. 000173351 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0 000173351 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000173351 7001_ $$0P:(DE-Juel1)159484$$aKuhl, Vanessa$$b1 000173351 7001_ $$0P:(DE-Juel1)144212$$aKlaffl, Simon$$b2 000173351 7001_ $$0P:(DE-Juel1)128943$$aBott, Michael$$b3$$eCorresponding Author 000173351 773__ $$0PERI:(DE-600)2406063-X$$a10.1111/1751-7915.12236$$gp. n/a - n/a$$n2$$p253–265$$tMicrobial biotechnology$$v8$$x1751-7915$$y2015 000173351 8564_ $$uhttps://juser.fz-juelich.de/record/173351/files/FZJ-2014-06761.pdf$$yOpenAccess 000173351 8564_ $$uhttps://juser.fz-juelich.de/record/173351/files/FZJ-2014-06761.jpg?subformat=icon-144$$xicon-144$$yOpenAccess 000173351 8564_ $$uhttps://juser.fz-juelich.de/record/173351/files/FZJ-2014-06761.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000173351 8564_ $$uhttps://juser.fz-juelich.de/record/173351/files/FZJ-2014-06761.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000173351 8767_ $$92015-02-16$$d2015-03-02$$eAPC$$jDeposit$$lDeposit: Wiley$$zFZJ - Helmholtz-FZJ Acount, Herr Mittermaier, Wiley OA 000173351 909CO $$ooai:juser.fz-juelich.de:173351$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000173351 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000173351 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000173351 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000173351 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000173351 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000173351 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000173351 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000173351 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000173351 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000173351 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000173351 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000173351 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000173351 9141_ $$y2014 000173351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157757$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000173351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000173351 9130_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000173351 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0 000173351 920__ $$lyes 000173351 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0 000173351 9801_ $$aFullTexts 000173351 980__ $$ajournal 000173351 980__ $$aVDB 000173351 980__ $$aI:(DE-Juel1)IBG-1-20101118 000173351 980__ $$aUNRESTRICTED 000173351 980__ $$aAPC