000173366 001__ 173366
000173366 005__ 20240712084521.0
000173366 0247_ $$2Handle$$a2128/8531
000173366 0247_ $$2ISSN$$a1866-1793
000173366 037__ $$aFZJ-2014-06776
000173366 041__ $$aEnglish
000173366 1001_ $$0P:(DE-Juel1)142337$$aBecker, Jan Philipp$$b0$$eCorresponding Author$$gmale$$ufzj
000173366 245__ $$aElectrochemical Texturing and Deposition of Transparent Conductive Oxide Layers for the Application in Silicon Thin-Film Solar Cells$$f2010-09-01 - 2013-08-31
000173366 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015
000173366 300__ $$aix, 156, XXIV S.
000173366 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1429694339_2222
000173366 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000173366 3367_ $$02$$2EndNote$$aThesis
000173366 3367_ $$2DRIVER$$adoctoralThesis
000173366 3367_ $$2BibTeX$$aPHDTHESIS
000173366 3367_ $$2DataCite$$aOutput Types/Dissertation
000173366 3367_ $$2ORCID$$aDISSERTATION
000173366 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v247
000173366 502__ $$aRWTH Aachen, Diss., 2014$$bDr.$$cRWTH Aachen$$d2014
000173366 520__ $$aDoped zinc oxide layers are widely used in thin-film solar cells for several purposes, for instance as transparent contacts, as a source of light scattering and as part of the back reflector. Magnetron sputtered, aluminum-doped zinc oxide thin films provide very high transparency and conductivity, and are usually flat in the as-deposited state. To introduce light scattering, a surface texture is conventionally introduced by post-deposition etching in diluted hydrochloric acid. However, the ability to obtain suitable surface morphologies by chemical dissolution is strongly dependent on the deposition process. Thus, optimization of zinc oxide thin films requires a careful trade-off between optical, electric, and morphological properties. This markedly limits the process window and excludes layers with excellent optical and electric properties due to a lack of suitable texturing processes. Electrochemical methods can help to overcome these limitations by making novel zinc oxide structures accessible. Both deposition and dissolution can be achieved using electrochemical methods. In this context, an advanced understanding of the stability of polycrystalline zinc oxide thin films in aqueous solutions is crucial. This work investigates the zinc oxide/electrolyte interface under various conditions in order to further the understanding of the interfacial reactions and the zinc oxide itself. Cathodic electrochemical deposition was used for the growth of zinc oxide films and nano-structures from aqueous solutions. This method utilizes specific manipulation of the interfacial pH at the substrate surface by reduction of a suitable precursor such as nitrate or molecular oxygen. The dependence of the zinc oxide precipitation and crystallization on several parameters such as the deposition potential, the bath temperature, the substrate, and the composition of the electrolyte were investigated. Temperatures above 50 $^{\circ}$C were found to be necessary for the crystallization of well defined hexagonal crystals. The comparison of electrochemical deposition on indium tin oxide and zinc oxide substrates revealed the fundamental influence of the substrate on the nucleation. While the growth on zinc oxide seed layers seemed to proceed epitaxially, conserving the preferential c-axis orientation and crystallite size of the substrate, the nucleation on indium tin oxide substrates depended largely on the applied potential. With increasing cathodic potential the density of nucleation sites increased. The crystallite size decreased simultaneously.
000173366 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000173366 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000173366 773__ $$y2015
000173366 8564_ $$uhttps://juser.fz-juelich.de/record/173366/files/Energie_Umwelt_247.pdf$$yOpenAccess
000173366 8564_ $$uhttps://juser.fz-juelich.de/record/173366/files/Energie_Umwelt_247.gif?subformat=icon$$xicon$$yOpenAccess
000173366 8564_ $$uhttps://juser.fz-juelich.de/record/173366/files/Energie_Umwelt_247.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000173366 8564_ $$uhttps://juser.fz-juelich.de/record/173366/files/Energie_Umwelt_247.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000173366 8564_ $$uhttps://juser.fz-juelich.de/record/173366/files/Energie_Umwelt_247.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000173366 8564_ $$uhttps://juser.fz-juelich.de/record/173366/files/Energie_Umwelt_247.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000173366 8564_ $$uhttps://juser.fz-juelich.de/record/173366/files/Energie_Umwelt_247.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000173366 909CO $$ooai:juser.fz-juelich.de:173366$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000173366 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000173366 9141_ $$y2015
000173366 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142337$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173366 9130_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000173366 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000173366 920__ $$lyes
000173366 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000173366 9801_ $$aFullTexts
000173366 980__ $$aphd
000173366 980__ $$aVDB
000173366 980__ $$aUNRESTRICTED
000173366 980__ $$aFullTexts
000173366 980__ $$abook
000173366 980__ $$aI:(DE-Juel1)IEK-5-20101013
000173366 981__ $$aI:(DE-Juel1)IMD-3-20101013