000173377 001__ 173377
000173377 005__ 20200702121720.0
000173377 0247_ $$2doi$$a10.1016/j.jhydrol.2014.11.042
000173377 0247_ $$2ISSN$$a0022-1694
000173377 0247_ $$2ISSN$$a1879-2707
000173377 0247_ $$2Handle$$a2128/8152
000173377 0247_ $$2WOS$$aWOS:000348255900027
000173377 037__ $$aFZJ-2014-06787
000173377 082__ $$a690
000173377 1001_ $$0P:(DE-HGF)0$$aKorres, W.$$b0$$eCorresponding Author
000173377 245__ $$aSpatio-temporal soil moisture patterns - A meta-analysis using plot to catchment scale data
000173377 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000173377 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s173377
000173377 3367_ $$2DataCite$$aOutput Types/Journal article
000173377 3367_ $$00$$2EndNote$$aJournal Article
000173377 3367_ $$2BibTeX$$aARTICLE
000173377 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173377 3367_ $$2DRIVER$$aarticle
000173377 520__ $$aSoil moisture is a key variable in hydrology, meteorology and agriculture. It is influenced by many factors, such as topography, soil properties, vegetation type, management, and meteorological conditions. The role of these factors in controlling the spatial patterns and temporal dynamics is often not well known. The aim of the current study is to analyze spatio-temporal soil moisture patterns acquired across a variety of land use types, on different spatial scales (plot to meso-scale catchment) and with different methods (point measurements, remote sensing, and modeling). We apply a uniform set of tools to determine method specific effects, as well as site and scale specific controlling factors. Spatial patterns of soil moisture and their temporal development were analyzed using nine different datasets from the Rur catchment in Western Germany. For all datasets we found negative linear relationships between the coefficient of variation and the mean soil moisture, indicating lower spatial variability at higher mean soil moisture. For a forest sub-catchment compared to cropped areas, the offset of this relationship was larger, with generally larger variability at similar mean soil moisture values. Using a geostatistical analysis of the soil moisture patterns we identified three groups of datasets with similar values for sill and range of the theoretical variogram: (i) modeled and measured datasets from the forest sub-catchment (patterns mainly influenced by soil properties and topography), (ii) remotely sensed datasets from the cropped part of the Rur catchment (patterns mainly influenced by the land-use structure of the cropped area), and (iii) modeled datasets from the cropped part of the Rur catchment (patterns mainly influenced by large scale variability of soil properties). A fractal analysis revealed that all analyzed soil moisture patterns showed a multifractal behavior, with at least one scale break and generally high fractal dimensions. Corresponding scale breaks were found between different datasets. The factors causing these scale breaks are consistent with the findings of the geostatistical analysis. Furthermore, the joined analysis of the different datasets showed that small differences in soil moisture dynamics, especially at the upper and lower bounds of soil moisture (at maximum porosity and wilting point of the soils) can have a large influence on the soil moisture patterns and their autocorrelation structure. Depending on the prevalent type of land use and the time of year, vegetation causes a decrease or an increase of spatial variability in the soil moisture pattern.
000173377 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000173377 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000173377 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173377 7001_ $$0P:(DE-HGF)0$$aReichenau, T. G.$$b1
000173377 7001_ $$0P:(DE-HGF)0$$aFiener, P.$$b2
000173377 7001_ $$0P:(DE-HGF)0$$aKoyama, C. N.$$b3
000173377 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b4$$ufzj
000173377 7001_ $$0P:(DE-HGF)0$$aCornelissen, T.$$b5
000173377 7001_ $$0P:(DE-Juel1)144513$$aBaatz, R.$$b6$$ufzj
000173377 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b7$$ufzj
000173377 7001_ $$0P:(DE-HGF)0$$aDiekkrüger, B.$$b8
000173377 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b9$$ufzj
000173377 7001_ $$0P:(DE-HGF)0$$aSchneider, K.$$b10
000173377 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2014.11.042$$gVol. 520, p. 326 - 341$$p326 - 341$$tJournal of hydrology$$v520$$x0022-1694$$y2015
000173377 8564_ $$uhttps://juser.fz-juelich.de/record/173377/files/FZJ-2014-06787.pdf$$yOpenAccess
000173377 8564_ $$uhttps://juser.fz-juelich.de/record/173377/files/FZJ-2014-06787.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000173377 8564_ $$uhttps://juser.fz-juelich.de/record/173377/files/FZJ-2014-06787.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000173377 8564_ $$uhttps://juser.fz-juelich.de/record/173377/files/FZJ-2014-06787.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000173377 909CO $$ooai:juser.fz-juelich.de:173377$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire$$pdnbdelivery
000173377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000173377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144513$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000173377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129469$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000173377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000173377 9130_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000173377 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000173377 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000173377 9141_ $$y2015
000173377 915__ $$0LIC:(DE-HGF)CCBYNCND3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
000173377 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173377 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173377 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173377 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173377 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173377 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173377 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173377 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000173377 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000173377 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000173377 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000173377 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000173377 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000173377 920__ $$lyes
000173377 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000173377 980__ $$ajournal
000173377 980__ $$aVDB
000173377 980__ $$aUNRESTRICTED
000173377 980__ $$aFullTexts
000173377 980__ $$aI:(DE-Juel1)IBG-3-20101118
000173377 9801_ $$aFullTexts