000173392 001__ 173392
000173392 005__ 20230426083115.0
000173392 0247_ $$2doi$$a10.1103/PhysRevB.89.224104
000173392 0247_ $$2ISSN$$a0163-1829
000173392 0247_ $$2ISSN$$a0556-2805
000173392 0247_ $$2ISSN$$a1095-3795
000173392 0247_ $$2ISSN$$a1098-0121
000173392 0247_ $$2ISSN$$a1550-235X
000173392 0247_ $$2Handle$$a2128/8142
000173392 0247_ $$2WOS$$aWOS:000338652100003
000173392 0247_ $$2altmetric$$aaltmetric:2219305
000173392 037__ $$aFZJ-2014-06802
000173392 082__ $$a530
000173392 1001_ $$0P:(DE-Juel1)130727$$aHüter, C.$$b0$$eCorresponding Author$$ufzj
000173392 245__ $$aInfluence of short-range forces on melting along grain boundaries
000173392 260__ $$aCollege Park, Md.$$bAPS$$c2014
000173392 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s173392
000173392 3367_ $$2DataCite$$aOutput Types/Journal article
000173392 3367_ $$00$$2EndNote$$aJournal Article
000173392 3367_ $$2BibTeX$$aARTICLE
000173392 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173392 3367_ $$2DRIVER$$aarticle
000173392 520__ $$aWe investigate a model which couples diffusional melting and nanoscale structural forces via a combined nano-mesoscale description. Specifically, we obtain analytic and numerical solutions for melting processes at grain boundaries influenced by structural disjoining forces in the experimentally relevant regime of small deviations from the melting temperature. Though spatially limited to the close vicinity of the tip of the propagating melt finger, the influence of the disjoining forces is remarkable and leads to a strong modification of the penetration velocity. The problem is represented in terms of a sharp interface model to capture the wide range of relevant length scales, predicting the growth velocity and the length scale describing the pattern, depending on temperature, grain boundary energy, strength, and length scale of the exponential decay of the disjoining potential. Close to equilibrium the short-range effects near the triple junctions can be expressed through a contact angle renormalization in a mesoscale formulation. For higher driving forces strong deviations are found, leading to a significantly higher melting velocity than predicted from a purely mesoscopic description.
000173392 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000173392 542__ $$2Crossref$$i2014-06-25$$uhttp://link.aps.org/licenses/aps-default-license
000173392 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173392 7001_ $$0P:(DE-HGF)0$$aTwiste, F.$$b1
000173392 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim$$b2$$ufzj
000173392 7001_ $$0P:(DE-HGF)0$$aNeugebauer, J.$$b3
000173392 7001_ $$0P:(DE-HGF)0$$aSpatschek, R.$$b4
000173392 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.89.224104$$bAmerican Physical Society (APS)$$d2014-06-25$$n22$$p224104$$tPhysical Review B$$v89$$x1098-0121$$y2014
000173392 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.89.224104$$gVol. 89, no. 22, p. 224104$$n22$$p224104$$tPhysical review / B$$v89$$x1098-0121$$y2014
000173392 8564_ $$uhttps://juser.fz-juelich.de/record/173392/files/FZJ-2014-06802.pdf$$yOpenAccess
000173392 8564_ $$uhttps://juser.fz-juelich.de/record/173392/files/FZJ-2014-06802.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000173392 8564_ $$uhttps://juser.fz-juelich.de/record/173392/files/FZJ-2014-06802.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000173392 8564_ $$uhttps://juser.fz-juelich.de/record/173392/files/FZJ-2014-06802.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000173392 909CO $$ooai:juser.fz-juelich.de:173392$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000173392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130727$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000173392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173392 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000173392 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000173392 9141_ $$y2014
000173392 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000173392 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173392 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173392 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173392 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173392 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173392 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173392 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173392 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000173392 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000173392 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173392 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000173392 920__ $$lyes
000173392 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000173392 980__ $$ajournal
000173392 980__ $$aVDB
000173392 980__ $$aUNRESTRICTED
000173392 980__ $$aFullTexts
000173392 980__ $$aI:(DE-Juel1)PGI-2-20110106
000173392 9801_ $$aFullTexts
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-003-0083-3
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.064121
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.024110
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.024109
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.81.051601
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2009.04.044
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.155702
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.105701
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1722742
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2913675
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.79.020601
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.36.2126
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.21.1893
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.184110
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.57.827
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.83.050601
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/81/54004
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-6160(77)90199-7
000173392 999C5 $$1G. P. Ivantsov$$2Crossref$$oG. P. Ivantsov 1947$$y1947
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ie50320a024
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la062634a
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-8686(94)80028-6
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0927-7757(99)00098-9
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.214201
000173392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018739100101472