000173406 001__ 173406
000173406 005__ 20210129214631.0
000173406 0247_ $$2doi$$a10.1002/2013JB010586
000173406 0247_ $$2ISSN$$a0148-0227
000173406 0247_ $$2ISSN$$a2156-2202
000173406 0247_ $$2ISSN$$a2169-9313
000173406 0247_ $$2ISSN$$a2169-9356
000173406 0247_ $$2WOS$$aWOS:000336844700012
000173406 0247_ $$2Handle$$a2128/15744
000173406 0247_ $$2altmetric$$aaltmetric:1676113
000173406 037__ $$aFZJ-2014-06816
000173406 082__ $$a550
000173406 1001_ $$0P:(DE-HGF)0$$aBar-Sinai, Yohai$$b0$$eCorresponding Author
000173406 245__ $$aOn the velocity-strengthening behavior of dry friction
000173406 260__ $$aHoboken, NJ$$bWiley$$c2014
000173406 3367_ $$2DRIVER$$aarticle
000173406 3367_ $$2DataCite$$aOutput Types/Journal article
000173406 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509607492_7894
000173406 3367_ $$2BibTeX$$aARTICLE
000173406 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173406 3367_ $$00$$2EndNote$$aJournal Article
000173406 520__ $$aThe onset of frictional instabilities, e.g., earthquakes nucleation, is intimately related to velocity-weakening friction, in which the frictional resistance of interfaces decreases with increasing slip velocity. While this frictional response has been studied extensively, less attention has been given to steady state velocity-strengthening friction, in spite of its potential importance for various aspects of frictional phenomena such as the propagation speed of interfacial rupture fronts and the amount of stored energy released by them. In this note we suggest that a crossover from steady state velocity-weakening friction at small slip velocities to steady state velocity-strengthening friction at higher velocities might be a generic feature of dry friction. We further argue that while thermally activated rheology naturally gives rise to logarithmic steady state velocity-strengthening friction, a crossover to stronger-than-logarithmic strengthening might take place at higher slip velocities, possibly accompanied by a change in the dominant dissipation mechanism. We sketch a few physical mechanisms that may account for the crossover to stronger-than-logarithmic steady state velocity strengthening and compile a rather extensive set of experimental data available in the literature, lending support to these ideas.
000173406 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000173406 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173406 7001_ $$0P:(DE-HGF)0$$aSpatschek, Robert$$b1
000173406 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim$$b2$$ufzj
000173406 7001_ $$0P:(DE-HGF)0$$aBouchbinder, Eran$$b3
000173406 773__ $$0PERI:(DE-600)2016813-5$$a10.1002/2013JB010586$$gVol. 119, no. 3, p. 1738 - 1748$$n3$$p1738 - 1748$$tJournal of geophysical research / Solid earth$$v119$$x2169-9313$$y2014
000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.pdf$$yOpenAccess
000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/FZJ-2014-06816.pdf$$yOpenAccess
000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.gif?subformat=icon$$xicon$$yOpenAccess
000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000173406 909CO $$ooai:juser.fz-juelich.de:173406$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000173406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173406 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000173406 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000173406 9141_ $$y2014
000173406 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173406 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173406 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173406 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173406 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173406 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000173406 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000173406 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173406 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000173406 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173406 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173406 920__ $$lyes
000173406 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000173406 980__ $$ajournal
000173406 980__ $$aVDB
000173406 980__ $$aUNRESTRICTED
000173406 980__ $$aI:(DE-Juel1)PGI-2-20110106
000173406 9801_ $$aFullTexts