000173406 001__ 173406 000173406 005__ 20210129214631.0 000173406 0247_ $$2doi$$a10.1002/2013JB010586 000173406 0247_ $$2ISSN$$a0148-0227 000173406 0247_ $$2ISSN$$a2156-2202 000173406 0247_ $$2ISSN$$a2169-9313 000173406 0247_ $$2ISSN$$a2169-9356 000173406 0247_ $$2WOS$$aWOS:000336844700012 000173406 0247_ $$2Handle$$a2128/15744 000173406 0247_ $$2altmetric$$aaltmetric:1676113 000173406 037__ $$aFZJ-2014-06816 000173406 082__ $$a550 000173406 1001_ $$0P:(DE-HGF)0$$aBar-Sinai, Yohai$$b0$$eCorresponding Author 000173406 245__ $$aOn the velocity-strengthening behavior of dry friction 000173406 260__ $$aHoboken, NJ$$bWiley$$c2014 000173406 3367_ $$2DRIVER$$aarticle 000173406 3367_ $$2DataCite$$aOutput Types/Journal article 000173406 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509607492_7894 000173406 3367_ $$2BibTeX$$aARTICLE 000173406 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000173406 3367_ $$00$$2EndNote$$aJournal Article 000173406 520__ $$aThe onset of frictional instabilities, e.g., earthquakes nucleation, is intimately related to velocity-weakening friction, in which the frictional resistance of interfaces decreases with increasing slip velocity. While this frictional response has been studied extensively, less attention has been given to steady state velocity-strengthening friction, in spite of its potential importance for various aspects of frictional phenomena such as the propagation speed of interfacial rupture fronts and the amount of stored energy released by them. In this note we suggest that a crossover from steady state velocity-weakening friction at small slip velocities to steady state velocity-strengthening friction at higher velocities might be a generic feature of dry friction. We further argue that while thermally activated rheology naturally gives rise to logarithmic steady state velocity-strengthening friction, a crossover to stronger-than-logarithmic strengthening might take place at higher slip velocities, possibly accompanied by a change in the dominant dissipation mechanism. We sketch a few physical mechanisms that may account for the crossover to stronger-than-logarithmic steady state velocity strengthening and compile a rather extensive set of experimental data available in the literature, lending support to these ideas. 000173406 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0 000173406 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000173406 7001_ $$0P:(DE-HGF)0$$aSpatschek, Robert$$b1 000173406 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim$$b2$$ufzj 000173406 7001_ $$0P:(DE-HGF)0$$aBouchbinder, Eran$$b3 000173406 773__ $$0PERI:(DE-600)2016813-5$$a10.1002/2013JB010586$$gVol. 119, no. 3, p. 1738 - 1748$$n3$$p1738 - 1748$$tJournal of geophysical research / Solid earth$$v119$$x2169-9313$$y2014 000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.pdf$$yOpenAccess 000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/FZJ-2014-06816.pdf$$yOpenAccess 000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.gif?subformat=icon$$xicon$$yOpenAccess 000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000173406 8564_ $$uhttps://juser.fz-juelich.de/record/173406/files/1308.1420v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000173406 909CO $$ooai:juser.fz-juelich.de:173406$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000173406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000173406 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000173406 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0 000173406 9141_ $$y2014 000173406 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000173406 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000173406 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000173406 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000173406 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000173406 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000173406 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000173406 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000173406 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000173406 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000173406 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000173406 920__ $$lyes 000173406 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000173406 980__ $$ajournal 000173406 980__ $$aVDB 000173406 980__ $$aUNRESTRICTED 000173406 980__ $$aI:(DE-Juel1)PGI-2-20110106 000173406 9801_ $$aFullTexts