000173409 001__ 173409
000173409 005__ 20210129214631.0
000173409 0247_ $$2doi$$a10.1021/ma501718b
000173409 0247_ $$2ISSN$$a0024-9297
000173409 0247_ $$2ISSN$$a1520-5835
000173409 0247_ $$2WOS$$aWOS:000344905800042
000173409 037__ $$aFZJ-2014-06819
000173409 082__ $$a540
000173409 1001_ $$0P:(DE-Juel1)145430$$ade Beer, Sissi$$b0$$eCorresponding Author$$ufzj
000173409 245__ $$aFriction in (Im-) Miscible Polymer Brush Systems and the Role of Transverse Polymer Tilting
000173409 260__ $$aWashington, DC$$bSoc.$$c2014
000173409 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1418646284_10608
000173409 3367_ $$2DataCite$$aOutput Types/Journal article
000173409 3367_ $$00$$2EndNote$$aJournal Article
000173409 3367_ $$2BibTeX$$aARTICLE
000173409 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173409 3367_ $$2DRIVER$$aarticle
000173409 520__ $$aIt was found recently that two polymer brushes in a tribological contact do not interdigitate when each polymer brush has its own preferred solvent, leading to low friction and low wear rates. Here, we demonstrate, using molecular dynamics simulations, that mutually miscible and fully solvated brush systems do not significantly overlap either if the radii of curvature of the surfaces, to which the brushes are grafted, are sufficiently small. The brushes achieve this by bending away from the center of the contact, while they bend toward the center of the capillary when being only partially solvated. For the fully solvated brushes, immiscible systems also show smaller friction than miscible systems, although the friction reduction is less than for partially solvated brushes.
000173409 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000173409 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173409 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b1
000173409 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/ma501718b$$gVol. 47, no. 21, p. 7666 - 7673$$n21$$p7666 - 7673$$tMacromolecules$$v47$$x1520-5835$$y2014
000173409 8564_ $$uhttps://juser.fz-juelich.de/record/173409/files/FZJ-2014-06819.pdf$$yRestricted
000173409 909CO $$ooai:juser.fz-juelich.de:173409$$pVDB
000173409 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173409 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173409 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000173409 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000173409 9141_ $$y2014
000173409 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173409 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173409 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173409 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173409 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173409 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173409 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173409 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000173409 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000173409 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173409 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000173409 920__ $$lyes
000173409 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000173409 980__ $$ajournal
000173409 980__ $$aVDB
000173409 980__ $$aI:(DE-Juel1)JSC-20090406
000173409 980__ $$aUNRESTRICTED