000173410 001__ 173410
000173410 005__ 20210129214631.0
000173410 0247_ $$2doi$$a10.1088/0965-0393/22/6/065007
000173410 0247_ $$2ISSN$$a0965-0393
000173410 0247_ $$2ISSN$$a1361-651X
000173410 0247_ $$2WOS$$aWOS:000341230900007
000173410 037__ $$aFZJ-2014-06820
000173410 082__ $$a530
000173410 1001_ $$0P:(DE-HGF)0$$aGao, X. Z.$$b0$$eCorresponding Author
000173410 245__ $$aAtomic structure and energetics of amorphous-crystalline CuZr interfaces: a molecular dynamics study
000173410 260__ $$aBristol$$bIOP Publ.$$c2014
000173410 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1418646478_10606
000173410 3367_ $$2DataCite$$aOutput Types/Journal article
000173410 3367_ $$00$$2EndNote$$aJournal Article
000173410 3367_ $$2BibTeX$$aARTICLE
000173410 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173410 3367_ $$2DRIVER$$aarticle
000173410 520__ $$aThe local order of the binary alloy CuZr differs between the crystal (B2 phase) and the metallic glass (MG). In the B2 phase, both Cu and Zr reside in the center of polyhedra whose surfaces are composed of six tetragons and eight hexagons. In the glass, many different polyhedra occur with a large fraction of five-edged faces. However, little has hitherto been known about the local order in the interfacial region between glass and crystal. Using embedded-atom potential based molecular-dynamics simulations, we find it differs markedly from that in the glass. For example, distinctly fewer pentagons occur on the surfaces of Voronoi polyhedra in the interface than on those in the MG. Moreover, there is an increased variety of polyhedra allowing the interface to be more densely packed than the MG. Details of the polyhedra distribution and consequently various interfacial properties depend on the orientation of the crystals and to some degree also on the thermal history of the sample. For the investigated surfaces, we find that the interfacial energy is the smallest and the crystallization activation energy highest for the closest-packed crystalline surface. This result can be rationalized by the argument that the lattice spacing of the closest-packed surface is most commensurate with the wavelength associated with the density pair correlation function of the disordered system. In practice, our result implies that the reinforcement of MGs is longest-lived for nanocrystals with close-packed surfaces.
000173410 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000173410 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173410 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b1$$ufzj
000173410 7001_ $$0P:(DE-HGF)0$$aKong, L. T.$$b2
000173410 7001_ $$0P:(DE-HGF)0$$aLi, J. F.$$b3
000173410 773__ $$0PERI:(DE-600)2001737-6$$a10.1088/0965-0393/22/6/065007$$gVol. 22, no. 6, p. 065007 -$$n6$$p065007 $$tModelling and simulation in materials science and engineering$$v22$$x1361-651X$$y2014
000173410 8564_ $$uhttps://juser.fz-juelich.de/record/173410/files/FZJ-2014-06820.pdf$$yRestricted
000173410 909CO $$ooai:juser.fz-juelich.de:173410$$pVDB
000173410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000173410 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000173410 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000173410 9141_ $$y2014
000173410 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173410 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173410 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173410 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173410 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173410 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173410 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000173410 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173410 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000173410 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000173410 920__ $$lyes
000173410 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000173410 980__ $$ajournal
000173410 980__ $$aVDB
000173410 980__ $$aI:(DE-Juel1)JSC-20090406
000173410 980__ $$aUNRESTRICTED