000173412 001__ 173412
000173412 005__ 20210129214632.0
000173412 0247_ $$2doi$$a10.1088/0953-8984/26/35/355002
000173412 0247_ $$2ISSN$$a0953-8984
000173412 0247_ $$2ISSN$$a1361-648X
000173412 0247_ $$2WOS$$aWOS:000341110600004
000173412 0247_ $$2Handle$$a2128/24457
000173412 037__ $$aFZJ-2014-06822
000173412 082__ $$a530
000173412 1001_ $$0P:(DE-Juel1)145207$$aDapp, Wolfgang$$b0$$eCorresponding Author$$ufzj
000173412 245__ $$aSystematic analysis of Persson's contact mechanics theory of randomly rough elastic surfaces
000173412 260__ $$aBristol$$bIOP Publ.$$c2014
000173412 3367_ $$2DRIVER$$aarticle
000173412 3367_ $$2DataCite$$aOutput Types/Journal article
000173412 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583393663_1284
000173412 3367_ $$2BibTeX$$aARTICLE
000173412 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173412 3367_ $$00$$2EndNote$$aJournal Article
000173412 520__ $$aWe systematically check explicit and implicit assumptions of Persson's contact mechanics theory. It casts the evolution of the pressure distribution Pr(p) with increasing resolution of surface roughness as a diffusive process, in which resolution plays the role of time. The tested key assumptions of the theory are: (a) the diffusion coefficient is independent of pressure p, (b) the diffusion process is drift-free at any value of p, (c) the point p = 0 acts as an absorbing barrier, i.e., once a point falls out of contact, it never re-enters again, (d) the Fourier component of the elastic energy is only populated if the appropriate wave vector is resolved, and (e) it no longer changes when even smaller wavelengths are resolved. Using high-resolution numerical simulations, we quantify deviations from these approximations and find quite significant discrepancies in some cases. For example, the drift becomes substantial for small values of p, which typically represent points in real space close to a contact line. On the other hand, there is a significant flux of points re-entering contact. These and other identified deviations cancel each other to a large degree, resulting in an overall excellent description for contact area, contact geometry, and gap distribution functions. Similar fortuitous error cancellations cannot be guaranteed under different circumstances, for instance when investigating rubber friction. The results of the simulations may provide guidelines for a systematic improvement of the theory.
000173412 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000173412 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173412 7001_ $$0P:(DE-Juel1)145800$$aProdanov, Mykola$$b1
000173412 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b2
000173412 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/26/35/355002$$gVol. 26, no. 35, p. 355002 -$$n35$$p355002$$tJournal of physics / Condensed matter$$v26$$x1361-648X$$y2014
000173412 8564_ $$uhttps://juser.fz-juelich.de/record/173412/files/FZJ-2014-06822.pdf$$yRestricted
000173412 8564_ $$uhttps://juser.fz-juelich.de/record/173412/files/1406.6151v1.pdf$$yOpenAccess
000173412 8564_ $$uhttps://juser.fz-juelich.de/record/173412/files/FZJ-2014-06822.pdf?subformat=pdfa$$xpdfa$$yRestricted
000173412 8564_ $$uhttps://juser.fz-juelich.de/record/173412/files/1406.6151v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000173412 909CO $$ooai:juser.fz-juelich.de:173412$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000173412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000173412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173412 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000173412 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000173412 9141_ $$y2014
000173412 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173412 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173412 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173412 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173412 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173412 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000173412 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000173412 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000173412 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000173412 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173412 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000173412 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173412 920__ $$lyes
000173412 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000173412 980__ $$ajournal
000173412 980__ $$aVDB
000173412 980__ $$aUNRESTRICTED
000173412 980__ $$aI:(DE-Juel1)JSC-20090406
000173412 9801_ $$aFullTexts