000173413 001__ 173413 000173413 005__ 20210129214632.0 000173413 0247_ $$2doi$$a10.3762/bjnano.5.50 000173413 0247_ $$2WOS$$aWOS:000334373100001 000173413 037__ $$aFZJ-2014-06823 000173413 082__ $$a620 000173413 1001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b0$$eCorresponding Author$$ufzj 000173413 245__ $$aSingle-asperity contact mechanics with positive and negative work of adhesion: Influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids 000173413 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2014 000173413 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1418648081_10610 000173413 3367_ $$2DataCite$$aOutput Types/Journal article 000173413 3367_ $$00$$2EndNote$$aJournal Article 000173413 3367_ $$2BibTeX$$aARTICLE 000173413 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000173413 3367_ $$2DRIVER$$aarticle 000173413 520__ $$aIn this work, single-asperity contact mechanics is investigated for positive and negative work of adhesion Δγ. In the latter case, finite-range repulsion acts in addition to hard-wall constraints. This constitutes a continuum model for a contact immersed in a strongly wetting fluid, which can only be squeezed out in the center of the contact through a sufficiently large normal load FN. As for positive work of adhesion, two stable solutions can coexist in a finite range of normal loads. The competing solutions can be readily interpreted as contacts with either a load-bearing or a squeezed-out fluid. The possibility for coexistence and the subsequent discontinuous wetting and squeeze-out instabilities depend not only on the Tabor coefficient μT but also on the functional form of the finite-range repulsion. For example, coexistence and discontinuous wetting or squeeze-out do not occur when the repulsion decreases exponentially with distance. For positive work of adhesion, the normal displacement mainly depends on FN, Δγ, and μT but – unlike the contact area – barely on the functional form of the finite-range attraction. The results can benefit the interpretation of atomic force microscopy in liquid environments and the modeling of multi-asperity contacts. 000173413 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000173413 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000173413 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.5.50$$gVol. 5, p. 419 - 437$$p419 - 437$$tBeilstein journal of nanotechnology$$v5$$x2190-4286$$y2014 000173413 909CO $$ooai:juser.fz-juelich.de:173413$$pVDB 000173413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000173413 9141_ $$y2014 000173413 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000173413 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000173413 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000173413 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000173413 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000173413 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000173413 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000173413 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000173413 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000173413 920__ $$lyes 000173413 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000173413 980__ $$ajournal 000173413 980__ $$aVDB 000173413 980__ $$aI:(DE-Juel1)JSC-20090406 000173413 980__ $$aUNRESTRICTED