000173417 001__ 173417
000173417 005__ 20210129214633.0
000173417 0247_ $$2doi$$a10.1007/s11249-013-0282-z
000173417 0247_ $$2ISSN$$a1023-8883
000173417 0247_ $$2ISSN$$a1573-2711
000173417 0247_ $$2WOS$$aWOS:000330624600006
000173417 0247_ $$2Handle$$a2128/15751
000173417 037__ $$aFZJ-2014-06827
000173417 082__ $$a670
000173417 1001_ $$0P:(DE-Juel1)145800$$aProdanov, Mykola$$b0
000173417 245__ $$aOn the Contact Area and Mean Gap of Rough, Elastic Contacts: Dimensional Analysis, Numerical Corrections, and Reference Data
000173417 260__ $$aBasel$$bBaltzer$$c2014
000173417 3367_ $$2DRIVER$$aarticle
000173417 3367_ $$2DataCite$$aOutput Types/Journal article
000173417 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509610019_7902
000173417 3367_ $$2BibTeX$$aARTICLE
000173417 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000173417 3367_ $$00$$2EndNote$$aJournal Article
000173417 520__ $$aThe description of elastic, nonadhesive contacts between solids with self-affine surface roughness seems to necessitate knowledge of a large number of parameters. However, few parameters suffice to determine many important interfacial properties as we show by combining dimensional analysis with numerical simulations. This insight is used to deduce the pressure dependence of the relative contact area and the mean interfacial separation Δu¯ and to present the results in a compact form. Given a proper unit choice for pressure p, i.e., effective modulus E * times the root mean square gradient g¯ , the relative contact area mainly depends on p but barely on the Hurst exponent H even at large p. When using the root mean square height h¯ as unit of length, Δu¯ additionally depends on the ratio of the height spectrum cutoffs at short and long wavelengths. In the fractal limit, where that ratio is zero, solely the roughness at short wavelengths is relevant for Δu¯ . This limit, however, should not be relevant for practical applications. Our work contains a brief summary of the employed numerical method Green’s function molecular dynamics including an illustration of how to systematically overcome numerical shortcomings through appropriate finite-size, fractal, and discretization corrections. Additionally, we outline the derivation of Persson theory in dimensionless units. Persson theory compares well to the numerical reference data.
000173417 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000173417 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000173417 7001_ $$0P:(DE-Juel1)145207$$aDapp, Wolfgang$$b1
000173417 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b2$$eCorresponding Author
000173417 773__ $$0PERI:(DE-600)2015908-0$$a10.1007/s11249-013-0282-z$$gVol. 53, no. 2, p. 433 - 448$$n2$$p433 - 448$$tTribology letters$$v53$$x1573-2711$$y2014
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.pdf$$yRestricted
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/1311.7547v2.pdf$$yOpenAccess
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.gif?subformat=icon$$xicon$$yRestricted
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/1311.7547v2.gif?subformat=icon$$xicon$$yOpenAccess
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/1311.7547v2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/1311.7547v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/1311.7547v2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000173417 8564_ $$uhttps://juser.fz-juelich.de/record/173417/files/1311.7547v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000173417 909CO $$ooai:juser.fz-juelich.de:173417$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000173417 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145207$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000173417 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000173417 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000173417 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000173417 9141_ $$y2014
000173417 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000173417 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000173417 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000173417 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000173417 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000173417 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000173417 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000173417 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000173417 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000173417 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000173417 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000173417 920__ $$lyes
000173417 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000173417 980__ $$ajournal
000173417 980__ $$aVDB
000173417 980__ $$aUNRESTRICTED
000173417 980__ $$aI:(DE-Juel1)JSC-20090406
000173417 9801_ $$aFullTexts