001     173417
005     20210129214633.0
024 7 _ |a 10.1007/s11249-013-0282-z
|2 doi
024 7 _ |a 1023-8883
|2 ISSN
024 7 _ |a 1573-2711
|2 ISSN
024 7 _ |a WOS:000330624600006
|2 WOS
024 7 _ |a 2128/15751
|2 Handle
037 _ _ |a FZJ-2014-06827
082 _ _ |a 670
100 1 _ |a Prodanov, Mykola
|0 P:(DE-Juel1)145800
|b 0
245 _ _ |a On the Contact Area and Mean Gap of Rough, Elastic Contacts: Dimensional Analysis, Numerical Corrections, and Reference Data
260 _ _ |a Basel
|c 2014
|b Baltzer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1509610019_7902
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The description of elastic, nonadhesive contacts between solids with self-affine surface roughness seems to necessitate knowledge of a large number of parameters. However, few parameters suffice to determine many important interfacial properties as we show by combining dimensional analysis with numerical simulations. This insight is used to deduce the pressure dependence of the relative contact area and the mean interfacial separation Δu¯ and to present the results in a compact form. Given a proper unit choice for pressure p, i.e., effective modulus E * times the root mean square gradient g¯ , the relative contact area mainly depends on p but barely on the Hurst exponent H even at large p. When using the root mean square height h¯ as unit of length, Δu¯ additionally depends on the ratio of the height spectrum cutoffs at short and long wavelengths. In the fractal limit, where that ratio is zero, solely the roughness at short wavelengths is relevant for Δu¯ . This limit, however, should not be relevant for practical applications. Our work contains a brief summary of the employed numerical method Green’s function molecular dynamics including an illustration of how to systematically overcome numerical shortcomings through appropriate finite-size, fractal, and discretization corrections. Additionally, we outline the derivation of Persson theory in dimensionless units. Persson theory compares well to the numerical reference data.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Dapp, Wolfgang
|0 P:(DE-Juel1)145207
|b 1
700 1 _ |a Müser, Martin
|0 P:(DE-Juel1)144442
|b 2
|e Corresponding Author
773 _ _ |a 10.1007/s11249-013-0282-z
|g Vol. 53, no. 2, p. 433 - 448
|0 PERI:(DE-600)2015908-0
|n 2
|p 433 - 448
|t Tribology letters
|v 53
|y 2014
|x 1573-2711
856 4 _ |u https://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/173417/files/1311.7547v2.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/173417/files/FZJ-2014-06827-1.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/173417/files/1311.7547v2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/173417/files/1311.7547v2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/173417/files/1311.7547v2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/173417/files/1311.7547v2.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/173417/files/1311.7547v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:173417
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145207
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144442
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21