000017425 001__ 17425
000017425 005__ 20240712100947.0
000017425 0247_ $$2DOI$$a10.1029/2010JD015544
000017425 0247_ $$2WOS$$aWOS:000293091600002
000017425 0247_ $$2ISSN$$a0141-8637
000017425 0247_ $$2Handle$$a2128/20647
000017425 037__ $$aPreJuSER-17425
000017425 041__ $$aeng
000017425 082__ $$a550
000017425 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000017425 1001_ $$0P:(DE-HGF)0$$aOffermann, D.$$b0
000017425 245__ $$aLong term development of short period gravity waves in Middle Europe
000017425 260__ $$aWashington, DC$$bUnion$$c2011
000017425 300__ $$aD00P07
000017425 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000017425 3367_ $$2DataCite$$aOutput Types/Journal article
000017425 3367_ $$00$$2EndNote$$aJournal Article
000017425 3367_ $$2BibTeX$$aARTICLE
000017425 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000017425 3367_ $$2DRIVER$$aarticle
000017425 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v116$$x0148-0227
000017425 500__ $$3POF3_Assignment on 2016-02-29
000017425 500__ $$aRecord converted from VDB: 12.11.2012
000017425 520__ $$aThe long-term development of short-period gravity waves is investigated using the analysis of temperature fluctuations in the mesosphere. The temperature fluctuations are quantified by their standard deviations sigma based on data from OH measurements at Wuppertal (51 degrees N, 7 degrees E) and Hohenpeissenberg (48 degrees N, 11 degrees E) obtained from 1994 to 2009 at 87 km altitude. The temperatures are Fourier analyzed in the spectral regime of periods between 3 and 10 min. The resulting oscillation amplitudes correlate very well with the standard deviations. Shortest periods are taken as "ripples" that are indicative of atmospheric instabilities/breaking gravity waves. In consequence the standard deviations are used as proxies for gravity wave activity and dissipation. This data set is analyzed for seasonal, intradecadal, and interdecadal (trend) variations. Seasonal changes show a double peak structure with maxima occurring slightly before circulation turnaround in spring and autumn. This is found to be in close agreement with seasonal variations of turbulent eddy coefficients obtained from WACCM 3.5. The intradecadal variations show close correlations with the zonal wind and the annual amplitude of the mesopause temperature. The long-term trend (16 years) indicates an increase of gravity wave activity of 1.5% per year. Correspondences with dynamical parameters such as zonal wind speed and summer length are discussed.
000017425 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000017425 588__ $$aDataset connected to Web of Science
000017425 650_7 $$2WoSType$$aJ
000017425 7001_ $$0P:(DE-HGF)0$$aWintel, J.$$b1
000017425 7001_ $$0P:(DE-Juel1)VDB96820$$aKalicinsky, C.$$b2$$uFZJ
000017425 7001_ $$0P:(DE-HGF)0$$aKnieling, P.$$b3
000017425 7001_ $$0P:(DE-Juel1)VDB810$$aKoppmann, R.$$b4$$uFZJ
000017425 7001_ $$0P:(DE-HGF)0$$aSteinbrecht, W.$$b5
000017425 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2010JD015544$$gVol. 116, p. D00P07$$pD00P07$$q116<D00P07$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v116$$x0148-0227$$y2011
000017425 8567_ $$uhttp://dx.doi.org/10.1029/2010JD015544
000017425 8564_ $$uhttps://juser.fz-juelich.de/record/17425/files/2010JD015544.pdf$$yOpenAccess
000017425 8564_ $$uhttps://juser.fz-juelich.de/record/17425/files/2010JD015544.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000017425 909CO $$ooai:juser.fz-juelich.de:17425$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000017425 9131_ $$0G:(DE-Juel1)FUEK491$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000017425 9132_ $$0G:(DE-HGF)POF3-249H$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vAddenda$$x0
000017425 9141_ $$y2011
000017425 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000017425 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000017425 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000017425 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000017425 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000017425 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000017425 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000017425 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$gIEK$$kIEK-7$$lStratosphäre$$x0
000017425 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$gIEK$$kIEK-8$$lTroposphäre$$x1
000017425 970__ $$aVDB:(DE-Juel1)131884
000017425 9801_ $$aFullTexts
000017425 980__ $$aVDB
000017425 980__ $$aConvertedRecord
000017425 980__ $$ajournal
000017425 980__ $$aI:(DE-Juel1)IEK-7-20101013
000017425 980__ $$aI:(DE-Juel1)IEK-8-20101013
000017425 980__ $$aUNRESTRICTED
000017425 981__ $$aI:(DE-Juel1)ICE-4-20101013
000017425 981__ $$aI:(DE-Juel1)ICE-3-20101013
000017425 981__ $$aI:(DE-Juel1)ICE-3-20101013
000017425 981__ $$aI:(DE-Juel1)IEK-8-20101013