001     17485
005     20180208215647.0
024 7 _ |2 DOI
|a 10.1016/j.jcrysgro.2011.03.008
024 7 _ |2 WOS
|a WOS:000292362600019
037 _ _ |a PreJuSER-17485
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Crystallography
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Krumrain, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB102215
245 _ _ |a MBE growth optimization of topological insulator Bi2Te3 films
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2011
300 _ _ |a 115 - 118
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Crystal Growth
|x 0022-0248
|0 3235
|v 324
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We investigated the growth of the topological insulator Bi2Te3 on Si(1 1 1) substrates by means of molecular-beam epitaxy (MBE). The substrate temperature as well as the Bi and Te beam-equivalent pressure (BEP) was varied in a large range. The structure and morphology of the layers were studied using X-ray diffraction (XRD), X-ray reflectivity (XRR) and atomic force microscopy (AFM). The layer-by-layer growth mode with quintuple layer (QL) as an unit is accomplished on large plateaus if the MBE growth takes place in a Te overpressure. At carefully optimized MBE growth parameters, we obtained atomically smooth, single-crystal Bi2Te3 with large area single QL covering about 75% of the layer surface. Angular-resolved photoelectron spectroscopy reveals a linear energy dispersion of charge carriers at the surface, evidencing topologically insulating properties of the Bi2Te3 epilayers. (C) 2011 Elsevier B.V. All rights reserved.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Atomic force microscopy
653 2 0 |2 Author
|a Crystal structure
653 2 0 |2 Author
|a X-ray diffraction
653 2 0 |2 Author
|a Molecular beam epitaxy
653 2 0 |2 Author
|a Bismuth compounds
653 2 0 |2 Author
|a Topological insulator
700 1 _ |a Mussler, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB72747
700 1 _ |a Borisova, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB84192
700 1 _ |a Stoica, T.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB5575
700 1 _ |a Plucinski, L.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB83183
700 1 _ |a Schneider, C. M.
|b 5
|u FZJ
|0 P:(DE-Juel1)130948
700 1 _ |a Gruetzmacher, D.
|b 6
|u FZJ
|0 P:(DE-Juel1)125588
773 _ _ |a 10.1016/j.jcrysgro.2011.03.008
|g Vol. 324, p. 115 - 118
|p 115 - 118
|q 324<115 - 118
|0 PERI:(DE-600)1466514-1
|t Journal of crystal growth
|v 324
|y 2011
|x 0022-0248
856 7 _ |u http://dx.doi.org/10.1016/j.jcrysgro.2011.03.008
909 C O |o oai:juser.fz-juelich.de:17485
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k PGI-6
|l Elektronische Eigenschaften
|g PGI
|0 I:(DE-Juel1)PGI-6-20110106
|x 0
920 1 _ |k PGI-9
|l Halbleiter-Nanoelektronik
|g PGI
|0 I:(DE-Juel1)PGI-9-20110106
|x 1
970 _ _ |a VDB:(DE-Juel1)131960
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21