000017548 001__ 17548
000017548 005__ 20180208233815.0
000017548 0247_ $$2DOI$$a10.1016/j.jnoncrysol_2010.07.036
000017548 0247_ $$2WOS$$aWOS:000287640800046
000017548 037__ $$aPreJuSER-17548
000017548 041__ $$aeng
000017548 082__ $$a660
000017548 084__ $$2WoS$$aMaterials Science, Ceramics
000017548 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000017548 1001_ $$0P:(DE-Juel1)130955$$aSchober, H.R.$$b0$$uFZJ
000017548 245__ $$aQuasi-localized vibrations and phonon damping in glasses
000017548 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2011
000017548 300__ $$a501 - 505
000017548 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000017548 3367_ $$2DataCite$$aOutput Types/Journal article
000017548 3367_ $$00$$2EndNote$$aJournal Article
000017548 3367_ $$2BibTeX$$aARTICLE
000017548 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000017548 3367_ $$2DRIVER$$aarticle
000017548 440_0 $$03611$$aJournal of Non-Crystalline Solids$$v357$$x0022-3093$$y2
000017548 500__ $$3POF3_Assignment on 2016-02-29
000017548 500__ $$aRecord converted from VDB: 12.11.2012
000017548 520__ $$aThere is ample evidence both from computer simulation and experiments that the structural disorder characterizing glasses and amorphous materials leads to quasi-localized vibrations (QLVs). The effect of these modes on low temperature properties such as heat capacity and conduction or tunnelling can be calculated in the framework of the soft potential model. Recently it has been shown that this concept can be extended to describe the boson peak (BP). By interaction, the density of states of the QLVs is changed to a characteristic shape corresponding to the boson peak in inelastic scattering. The QLVs interact with the sound waves and dampen them. We show that resonant scattering between QLVs and sound waves can describe the strong damping observed experimentally. (C) 2010 Elsevier B.V. All rights reserved.
000017548 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000017548 588__ $$aDataset connected to Web of Science
000017548 65320 $$2Author$$aGlasses
000017548 65320 $$2Author$$aVibration
000017548 65320 $$2Author$$aBoson peak
000017548 65320 $$2Author$$aPhonon
000017548 650_7 $$2WoSType$$aJ
000017548 773__ $$0PERI:(DE-600)1500501-x$$a10.1016/j.jnoncrysol_2010.07.036$$gVol. 357, p. 501 - 505$$p501 - 505$$q357<501 - 505$$tJournal of non-crystalline solids$$v357$$x0022-3093$$y2011
000017548 8567_ $$uhttp://dx.doi.org/10.1016/j.jnoncrysol_2010.07.036
000017548 909CO $$ooai:juser.fz-juelich.de:17548$$pVDB
000017548 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000017548 9141_ $$y2011
000017548 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000017548 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000017548 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$gPGI$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000017548 970__ $$aVDB:(DE-Juel1)132049
000017548 980__ $$aVDB
000017548 980__ $$aConvertedRecord
000017548 980__ $$ajournal
000017548 980__ $$aI:(DE-Juel1)PGI-2-20110106
000017548 980__ $$aUNRESTRICTED