001     17548
005     20180208233815.0
024 7 _ |2 DOI
|a 10.1016/j.jnoncrysol_2010.07.036
024 7 _ |2 WOS
|a WOS:000287640800046
037 _ _ |a PreJuSER-17548
041 _ _ |a eng
082 _ _ |a 660
084 _ _ |2 WoS
|a Materials Science, Ceramics
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |0 P:(DE-Juel1)130955
|a Schober, H.R.
|b 0
|u FZJ
245 _ _ |a Quasi-localized vibrations and phonon damping in glasses
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2011
300 _ _ |a 501 - 505
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 3611
|a Journal of Non-Crystalline Solids
|v 357
|x 0022-3093
|y 2
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a There is ample evidence both from computer simulation and experiments that the structural disorder characterizing glasses and amorphous materials leads to quasi-localized vibrations (QLVs). The effect of these modes on low temperature properties such as heat capacity and conduction or tunnelling can be calculated in the framework of the soft potential model. Recently it has been shown that this concept can be extended to describe the boson peak (BP). By interaction, the density of states of the QLVs is changed to a characteristic shape corresponding to the boson peak in inelastic scattering. The QLVs interact with the sound waves and dampen them. We show that resonant scattering between QLVs and sound waves can describe the strong damping observed experimentally. (C) 2010 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Glasses
653 2 0 |2 Author
|a Vibration
653 2 0 |2 Author
|a Boson peak
653 2 0 |2 Author
|a Phonon
773 _ _ |0 PERI:(DE-600)1500501-x
|a 10.1016/j.jnoncrysol_2010.07.036
|g Vol. 357, p. 501 - 505
|p 501 - 505
|q 357<501 - 505
|t Journal of non-crystalline solids
|v 357
|x 0022-3093
|y 2011
856 7 _ |u http://dx.doi.org/10.1016/j.jnoncrysol_2010.07.036
909 C O |o oai:juser.fz-juelich.de:17548
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |0 G:(DE-HGF)POF3-529H
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|g PGI
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
970 _ _ |a VDB:(DE-Juel1)132049
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21