000017624 001__ 17624
000017624 005__ 20200423203101.0
000017624 0247_ $$2DOI$$a10.1071/FP11164
000017624 0247_ $$2WOS$$aWOS:000297556100006
000017624 0247_ $$2altmetric$$aaltmetric:8212526
000017624 037__ $$aPreJuSER-17624
000017624 041__ $$aeng
000017624 082__ $$a580
000017624 084__ $$2WoS$$aPlant Sciences
000017624 1001_ $$0P:(DE-Juel1)129388$$aRascher, U.$$b0$$uFZJ
000017624 245__ $$aNon-invasive approaches for phenotyping of enhanced performance traits in bean
000017624 260__ $$aCollingwood, Victoria$$bCSIRO Publ.$$c2011
000017624 300__ $$a968 - 983
000017624 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000017624 3367_ $$2DataCite$$aOutput Types/Journal article
000017624 3367_ $$00$$2EndNote$$aJournal Article
000017624 3367_ $$2BibTeX$$aARTICLE
000017624 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000017624 3367_ $$2DRIVER$$aarticle
000017624 440_0 $$09141$$aFunctional Plant Biology$$v38$$x1445-4408$$y12
000017624 500__ $$aThis work has been made possible by the funding support of the BMBF Network CropSense and the DAAD fellowship to Francisco Pinto. Measurements of Fig. 2 (Soy-FACE) were supported by the Illinois Council for Food and Agricultural Research, the U.S. Department of Agricultural, and the Illinois Agricultural Experiment Station. The authors also greatly thank Bernd Kastenholz for cultivation of bean plants on agar for root system analysis; Jonas Buhler for developing the quantification algorithm of the data shown in Fig. 7 and Lena Meck for editing the manuscript.
000017624 520__ $$aPlant phenotyping is an emerging discipline in plant biology. Quantitative measurements of functional and structural traits help to better understand gene-environment interactions and support breeding for improved resource use efficiency of important crops such as bean (Phaseolus vulgaris L.). Here we provide an overview of state-of-the-art phenotyping approaches addressing three aspects of resource use efficiency in plants: belowground roots, aboveground shoots and transport/allocation processes. We demonstrate the capacity of high-precision methods to measure plant function or structural traits non-invasively, stating examples wherever possible. Ideally, high-precision methods are complemented by fast and high-throughput technologies. High-throughput phenotyping can be applied in the laboratory using automated data acquisition, as well as in the field, where imaging spectroscopy opens a new path to understand plant function non-invasively. For example, we demonstrate how magnetic resonance imaging (MRI) can resolve root structure and separate root systems under resource competition, how automated fluorescence imaging (PAM fluorometry) in combination with automated shape detection allows for high-throughput screening of photosynthetic traits and how imaging spectrometers can be used to quantify pigment concentration, sun-induced fluorescence and potentially photosynthetic quantum yield. We propose that these phenotyping techniques, combined with mechanistic knowledge on plant structure-function relationships, will open new research directions in whole-plant ecophysiology and may assist breeding for varieties with enhanced resource use efficiency varieties.
000017624 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000017624 588__ $$aDataset connected to Web of Science
000017624 65320 $$2Author$$afluorescence
000017624 65320 $$2Author$$aimaging spectroscopy
000017624 65320 $$2Author$$anon-invasive
000017624 65320 $$2Author$$aresource use efficiency
000017624 650_7 $$2WoSType$$aJ
000017624 7001_ $$0P:(DE-Juel1)129286$$aBlossfeld, S.$$b1$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)143649$$aFiorani, F.$$b2$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)129336$$aJahnke, S.$$b3$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)129337$$aJansen, M.$$b4$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)129349$$aKuhn, A.J.$$b5$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)129358$$aMatsubara, S.$$b6$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)VDB102833$$aMärtin, L.L.A.$$b7$$uFZJ
000017624 7001_ $$0P:(DE-HGF)0$$aMerchant, A.$$b8
000017624 7001_ $$0P:(DE-Juel1)129360$$aMetzner, R.$$b9$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)142555$$aMüller-Linow, M.$$b10$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)129373$$aNagel, K.A.$$b11$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)129379$$aPieruschka, R.$$b12$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)138884$$aPinto, F.$$b13$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)VDB87534$$aSchreiber, C.M.$$b14$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)129409$$aTemperton, V.M.$$b15$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)VDB67249$$aThorpe, M.R.$$b16$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)129425$$aVan Dusschoten, D.$$b17$$uFZJ
000017624 7001_ $$0P:(DE-HGF)0$$aVan Volkenburgh, E.$$b18
000017624 7001_ $$0P:(DE-Juel1)129422$$aWindt, C.W.$$b19$$uFZJ
000017624 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b20$$uFZJ
000017624 773__ $$0PERI:(DE-600)1496158-1$$a10.1071/FP11164$$gVol. 38, p. 968 - 983$$p968 - 983$$q38<968 - 983$$tFunctional plant biology$$v38$$x1445-4408$$y2011
000017624 8567_ $$uhttp://dx.doi.org/10.1071/FP11164
000017624 8564_ $$uhttps://juser.fz-juelich.de/record/17624/files/FZJ-17624.pdf$$yRestricted$$zPublished final document.
000017624 909CO $$ooai:juser.fz-juelich.de:17624$$pVDB
000017624 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000017624 9141_ $$y2011
000017624 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000017624 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000017624 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$gIBG$$kIBG-2$$lPflanzenwissenschaften$$x0
000017624 970__ $$aVDB:(DE-Juel1)132158
000017624 980__ $$aVDB
000017624 980__ $$aConvertedRecord
000017624 980__ $$ajournal
000017624 980__ $$aI:(DE-Juel1)IBG-2-20101118
000017624 980__ $$aUNRESTRICTED