001     17624
005     20200423203101.0
024 7 _ |2 DOI
|a 10.1071/FP11164
024 7 _ |2 WOS
|a WOS:000297556100006
024 7 _ |a altmetric:8212526
|2 altmetric
037 _ _ |a PreJuSER-17624
041 _ _ |a eng
082 _ _ |a 580
084 _ _ |2 WoS
|a Plant Sciences
100 1 _ |a Rascher, U.
|b 0
|u FZJ
|0 P:(DE-Juel1)129388
245 _ _ |a Non-invasive approaches for phenotyping of enhanced performance traits in bean
260 _ _ |a Collingwood, Victoria
|b CSIRO Publ.
|c 2011
300 _ _ |a 968 - 983
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Functional Plant Biology
|x 1445-4408
|0 9141
|y 12
|v 38
500 _ _ |a This work has been made possible by the funding support of the BMBF Network CropSense and the DAAD fellowship to Francisco Pinto. Measurements of Fig. 2 (Soy-FACE) were supported by the Illinois Council for Food and Agricultural Research, the U.S. Department of Agricultural, and the Illinois Agricultural Experiment Station. The authors also greatly thank Bernd Kastenholz for cultivation of bean plants on agar for root system analysis; Jonas Buhler for developing the quantification algorithm of the data shown in Fig. 7 and Lena Meck for editing the manuscript.
520 _ _ |a Plant phenotyping is an emerging discipline in plant biology. Quantitative measurements of functional and structural traits help to better understand gene-environment interactions and support breeding for improved resource use efficiency of important crops such as bean (Phaseolus vulgaris L.). Here we provide an overview of state-of-the-art phenotyping approaches addressing three aspects of resource use efficiency in plants: belowground roots, aboveground shoots and transport/allocation processes. We demonstrate the capacity of high-precision methods to measure plant function or structural traits non-invasively, stating examples wherever possible. Ideally, high-precision methods are complemented by fast and high-throughput technologies. High-throughput phenotyping can be applied in the laboratory using automated data acquisition, as well as in the field, where imaging spectroscopy opens a new path to understand plant function non-invasively. For example, we demonstrate how magnetic resonance imaging (MRI) can resolve root structure and separate root systems under resource competition, how automated fluorescence imaging (PAM fluorometry) in combination with automated shape detection allows for high-throughput screening of photosynthetic traits and how imaging spectrometers can be used to quantify pigment concentration, sun-induced fluorescence and potentially photosynthetic quantum yield. We propose that these phenotyping techniques, combined with mechanistic knowledge on plant structure-function relationships, will open new research directions in whole-plant ecophysiology and may assist breeding for varieties with enhanced resource use efficiency varieties.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a fluorescence
653 2 0 |2 Author
|a imaging spectroscopy
653 2 0 |2 Author
|a non-invasive
653 2 0 |2 Author
|a resource use efficiency
700 1 _ |a Blossfeld, S.
|b 1
|u FZJ
|0 P:(DE-Juel1)129286
700 1 _ |a Fiorani, F.
|b 2
|u FZJ
|0 P:(DE-Juel1)143649
700 1 _ |a Jahnke, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)129336
700 1 _ |a Jansen, M.
|b 4
|u FZJ
|0 P:(DE-Juel1)129337
700 1 _ |a Kuhn, A.J.
|b 5
|u FZJ
|0 P:(DE-Juel1)129349
700 1 _ |a Matsubara, S.
|b 6
|u FZJ
|0 P:(DE-Juel1)129358
700 1 _ |a Märtin, L.L.A.
|b 7
|u FZJ
|0 P:(DE-Juel1)VDB102833
700 1 _ |a Merchant, A.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Metzner, R.
|b 9
|u FZJ
|0 P:(DE-Juel1)129360
700 1 _ |a Müller-Linow, M.
|b 10
|u FZJ
|0 P:(DE-Juel1)142555
700 1 _ |a Nagel, K.A.
|b 11
|u FZJ
|0 P:(DE-Juel1)129373
700 1 _ |a Pieruschka, R.
|b 12
|u FZJ
|0 P:(DE-Juel1)129379
700 1 _ |a Pinto, F.
|b 13
|u FZJ
|0 P:(DE-Juel1)138884
700 1 _ |a Schreiber, C.M.
|b 14
|u FZJ
|0 P:(DE-Juel1)VDB87534
700 1 _ |a Temperton, V.M.
|b 15
|u FZJ
|0 P:(DE-Juel1)129409
700 1 _ |a Thorpe, M.R.
|b 16
|u FZJ
|0 P:(DE-Juel1)VDB67249
700 1 _ |a Van Dusschoten, D.
|b 17
|u FZJ
|0 P:(DE-Juel1)129425
700 1 _ |a Van Volkenburgh, E.
|b 18
|0 P:(DE-HGF)0
700 1 _ |a Windt, C.W.
|b 19
|u FZJ
|0 P:(DE-Juel1)129422
700 1 _ |a Schurr, U.
|b 20
|u FZJ
|0 P:(DE-Juel1)129402
773 _ _ |a 10.1071/FP11164
|g Vol. 38, p. 968 - 983
|p 968 - 983
|q 38<968 - 983
|0 PERI:(DE-600)1496158-1
|t Functional plant biology
|v 38
|y 2011
|x 1445-4408
856 7 _ |u http://dx.doi.org/10.1071/FP11164
856 4 _ |u https://juser.fz-juelich.de/record/17624/files/FZJ-17624.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:17624
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBG-2
|l Pflanzenwissenschaften
|g IBG
|0 I:(DE-Juel1)IBG-2-20101118
|x 0
970 _ _ |a VDB:(DE-Juel1)132158
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21