000017645 001__ 17645
000017645 005__ 20240625095037.0
000017645 0247_ $$2Handle$$a2128/7348
000017645 0247_ $$2ISSN$$a2192-8525
000017645 037__ $$aPreJuSER-17645
000017645 041__ $$aEnglish
000017645 1001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b0$$eEditor$$gfemale$$uFZJ
000017645 245__ $$aThe LDA+DMFT approach to strongly correlated materials
000017645 260__ $$aJülich$$bForschungszenrum Jülich GmbH Zentralbibliothek, Verlag$$c2011
000017645 300__ $$agetr. Zählung
000017645 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000017645 3367_ $$01$$2EndNote$$aBook
000017645 3367_ $$2ORCID$$aBOOK
000017645 3367_ $$2DataCite$$aOutput Types/Book
000017645 3367_ $$2DRIVER$$abook
000017645 3367_ $$2BibTeX$$aBOOK
000017645 4900_ $$0PERI:(DE-600)2638807-8$$aSchriften des Forschungszentrums Jülich. Reihe modeling and simulation$$v1
000017645 500__ $$3POF3_Assignment on 2016-02-29
000017645 500__ $$aRecord converted from VDB: 12.11.2012
000017645 520__ $$aSoon after the discovery of the basic principles of quantum mechanics theorists set out to explain the properties of solids from a first-principles, atomistic perspective. However, it soon became clear that theoretical methods based on the calculation of fermionic many-particle wave functions are notoriously difficult to handle. A crucial step forward was density-functional theory (DFT) and its local-density approximation (LDA). The success of DFT in explaining the physical and chemical properties of solids is remarkable. Nevertheless, LDA and its generalizations fail for systems whose low-energy properties are dominated by electron-electron correlations, such as Mott-insulating transition-metal oxides, Kondo and heavy-fermion materials, organic crystals, and many others. The realistic description of these strongly correlated materials remains, to date, one of the grand challenges of condensed matter-physics. During the last few years conventional band-structure calculations in the local density approximation (LDA) have been merged with a modern many-body approach, the dynamical mean-field theory (DMFT), into a novel computational method referred to as LDA + DMFT. This framework has proved to be a breakthrough for the realistic modeling of the electronic, magnetic, and structural properties of materials such as transition metals and their oxides. Nevertheless the LDA + DMFT approach still needs to be considerably advanced to be able to treat increasingly complex systems. This requires, for example, an improvement of the interface between the band structure and many-body constituents of the approach, the refinement and integration of efficient impurity solvers, the realistic computation of free energies and forces, and the development of schemes to treat non-local correlations. For this purpose 25 researchers from 16 different institutions in the German-speaking part of Europe joined forces and established the Research Unit FOR 1346 on $\textit{Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials}$, which is funded by the Deutsche Forschungsgemeinschaft since July 2010. It is the goal of this Research Unit to develop the LDA + DMFT framework into a comprehensive $\textit{ab initio}$ approach which will be able to describe, and eventually even predict, the properties of complex correlated materials. By organizing the 2011 Autumn School $\textit{Hands-on LDA + DMFT}$ the researchers of the DFG Research Unit FOR 1346 offer a practical introduction into the LDA  + DMFT approach for graduate students and young researchers in this novel branch of condensed matter physics. The school covers the following topics [...]
000017645 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000017645 7001_ $$0P:(DE-Juel1)VDB43156$$aKoch, Erik$$b1$$eEditor$$gmale$$uFZJ
000017645 7001_ $$0P:(DE-HGF)0$$aLichtenstein, Alexander$$b2$$eEditor$$gmale
000017645 7001_ $$0P:(DE-HGF)0$$aVollhardt, Dieter$$b3$$eEditor$$gmale
000017645 8564_ $$uhttps://juser.fz-juelich.de/record/17645/files/FZJ-17645.pdf$$yOpenAccess$$zPrepress version for printing
000017645 8564_ $$uhttps://juser.fz-juelich.de/record/17645/files/FZJ-17645.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000017645 8564_ $$uhttps://juser.fz-juelich.de/record/17645/files/FZJ-17645.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000017645 8564_ $$uhttps://juser.fz-juelich.de/record/17645/files/FZJ-17645.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000017645 909CO $$ooai:juser.fz-juelich.de:17645$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000017645 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000017645 9141_ $$y2011
000017645 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000017645 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000017645 920__ $$lyes
000017645 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$gIAS$$kIAS-3$$lTheoretische Nanoelektronik$$x1$$zIFF-3
000017645 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$gPGI$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000017645 970__ $$aVDB:(DE-Juel1)132194
000017645 980__ $$aVDB
000017645 980__ $$aConvertedRecord
000017645 980__ $$abook
000017645 980__ $$aI:(DE-Juel1)IAS-3-20090406
000017645 980__ $$aI:(DE-Juel1)PGI-2-20110106
000017645 980__ $$aUNRESTRICTED
000017645 980__ $$aJUWEL
000017645 980__ $$aFullTexts
000017645 9801_ $$aFullTexts
000017645 981__ $$aI:(DE-Juel1)PGI-2-20110106