000017655 001__ 17655
000017655 005__ 20180208222224.0
000017655 0247_ $$2pmid$$apmid:21921313
000017655 0247_ $$2DOI$$a10.1088/0953-8984/23/39/394203
000017655 0247_ $$2WOS$$aWOS:000295035200005
000017655 037__ $$aPreJuSER-17655
000017655 041__ $$aeng
000017655 082__ $$a530
000017655 084__ $$2WoS$$aPhysics, Condensed Matter
000017655 1001_ $$0P:(DE-HGF)0$$aOno, T.$$b0
000017655 245__ $$aReal-space calculations for electron transport properties of nanostructures
000017655 260__ $$aBristol$$bIOP Publ.$$c2011
000017655 300__ $$a394203
000017655 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000017655 3367_ $$2DataCite$$aOutput Types/Journal article
000017655 3367_ $$00$$2EndNote$$aJournal Article
000017655 3367_ $$2BibTeX$$aARTICLE
000017655 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000017655 3367_ $$2DRIVER$$aarticle
000017655 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v23$$x0953-8984$$y39
000017655 500__ $$3POF3_Assignment on 2016-02-29
000017655 500__ $$aThe author would like to thank Professor Kikuji Hirose of Osaka University for reading the entire text in its original form and for fruitful discussion. This research was partially supported by the Strategic Japanese-German Cooperative Program from Japan Science and Technology Agency and Deutsche Forschungsgemeinschaft, by a Grant-in-Aid for Young Scientists (B) (Grant No. 20710078), and also by a Grant-in-Aid for the Global COE 'Center of Excellence for Atomically Controlled Fabrication Technology' through Osaka University and 'Nanoscience and Quantum Physics Project' through the Tokyo Institute of Technology from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The numerical calculation was carried out using the computer facilities of the Institute for Solid State Physics at the University of Tokyo, Center for Computational Sciences at University of Tsukuba, the Research Center for Computational Science at the National Institute of Natural Science, and the Information Synergy Center at Tohoku University.
000017655 520__ $$aRecent developments in the fabrication and investigation of conductors of atomic dimensions have stimulated a large number of experimental and theoretical studies on these nanoscale devices. In this paper, we introduce examples presenting the efficiencies and advantages of a first-principles transport calculation scheme based on the real-space finite-difference (RSFD) formalism and the overbridging boundary-matching (OBM) method. The RSFD method does not suffer from the artificial periodicity problems that arise in methods using plane-wave basis sets or the linear dependence problems that occur in methods using atomic basis sets. Moreover, the algorithm of the RSFD method is suitable for massively parallel computers and, thus, the combination of the RSFD and OBM methods enables us to execute first-principles transport calculations using large models. To demonstrate the advantages of this method, several applications of the transport calculations in various systems ranging from jellium nanowires to the tip and surface system of scanning tunneling microscopy are presented.
000017655 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000017655 588__ $$aDataset connected to Web of Science, Pubmed
000017655 650_7 $$2WoSType$$aJ
000017655 7001_ $$0P:(DE-Juel1)VDB87430$$aTsukamoto, S.$$b1$$uFZJ
000017655 7001_ $$0P:(DE-HGF)0$$aEgami, Y.$$b2
000017655 7001_ $$0P:(DE-HGF)0$$aFujimoto, Y.$$b3
000017655 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/23/39/394203$$gVol. 23, p. 394203$$p394203$$q23<394203$$tJournal of physics / Condensed matter$$v23$$x0953-8984$$y2011
000017655 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/23/39/394203
000017655 909CO $$ooai:juser.fz-juelich.de:17655$$pVDB
000017655 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000017655 9141_ $$y2011
000017655 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000017655 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000017655 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000017655 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000017655 970__ $$aVDB:(DE-Juel1)132204
000017655 980__ $$aVDB
000017655 980__ $$aConvertedRecord
000017655 980__ $$ajournal
000017655 980__ $$aI:(DE-Juel1)IAS-1-20090406
000017655 980__ $$aI:(DE-Juel1)PGI-1-20110106
000017655 980__ $$aUNRESTRICTED
000017655 981__ $$aI:(DE-Juel1)PGI-1-20110106