001     17658
005     20180208231001.0
024 7 _ |2 DOI
|a 10.1016/j.susc.2011.02.024
024 7 _ |2 WOS
|a WOS:000291176200007
037 _ _ |a PreJuSER-17658
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Kakudate, T.
|b 0
245 _ _ |a Initial stage of adsorption of octithiophene molecules on Cu(111)
260 _ _ |a Amsterdam
|b Elsevier
|c 2011
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 5673
|a Surface Science
|v 605
|x 0039-6028
|y 11
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a This work was supported in part by the World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics, MEXT, Japan. T. N acknowledges the support of Grant-in-Aid for Scientific Research (A) (No. 22241030-2).
520 _ _ |a The initial stage of the adsorption of octithiophene (8T) molecules on a Cu(111) surface is investigated using a scanning tunneling microscope at room temperature. We find a characteristic molecular chain structure of 8T molecules on a terrace of the Cu(111) surface, which has not been reported so far for adsorption of oligothiophene molecules on metal surfaces. Up to the adsorption of 0.26 monolayer (ML), 81 molecules in the molecular chain align with their long axis parallel to the Cu < 11-2 > direction. With increasing coverage, there appear 8T molecules that align with their long axis parallel to the Cu < 110 > direction. The appearance of different molecular orientations is understood by the decrease of the number of the adsorption sites for extending the molecular chains. Fragments of 8T molecules, such as single thiophene molecules, are also observed in this work. They are trapped only at the step edges of the Cu(111) surface at the beginning and later trapped in a small Cu(111) region surrounded by 8T molecules. (C) 2011 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Oligothiophene
653 2 0 |2 Author
|a Octithiophene
653 2 0 |2 Author
|a Adsorption
653 2 0 |2 Author
|a Molecular chain
653 2 0 |2 Author
|a Cu(111)
653 2 0 |2 Author
|a Scanning tunneling microscopy
700 1 _ |0 P:(DE-Juel1)VDB87430
|a Tsukamoto, S.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Nakaya, M.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Nakayama, T.
|b 3
773 _ _ |0 PERI:(DE-600)1479030-0
|a 10.1016/j.susc.2011.02.024
|g Vol. 605
|q 605
|t Surface science
|v 605
|x 0039-6028
|y 2011
856 7 _ |u http://dx.doi.org/10.1016/j.susc.2011.02.024
909 C O |o oai:juser.fz-juelich.de:17658
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
|z IFF-1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|g PGI
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
970 _ _ |a VDB:(DE-Juel1)132207
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21