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Extensive ab-initio electronic structure calculations on Heusler alloys suggest that Cr2CoGa is the

alloy of choice to achieve the half-metallic fully-compensated ferrimagnetism since (1) it has been

already grown experimentally [T. Graf et al., Z. Anorg. Allg. Chem. 635, 976 (2009)], (2) half-

metallic XA structure is favored energetically over all the studied lattice constant range with

respect to the L21 which is not half-metallic, (3) the half-metallic gap is wide and the Fermi level

falls at the middle of the gap and thus, it presents high degree of spin-polarization for a wide range

of lattice constants, and (4) the Curie temperature is extremely high reaching the 1520 K.
VC 2011 American Institute of Physics. [doi:10.1063/1.3619844]

Half-metallic alloys have been widely studied due to

their potential applications in spintronics.1,2 These com-

pounds present metallic character for the electrons of one

spin direction while their band structure presents a gap in the

other spin direction and thus half-metallic properties.2 Half-

metallic Heusler compounds having the formula X2YZ,

where X and Y transition metal atoms and Z a sp-element,

attracted intense interest since: (1) most of them present very

high Curie temperatures, (2) they crystallize in a cubic high-

symmetry structure closely related to the zincblende of semi-

conductors, and (3) simply by varying in the periodic table

the valence of X, Y, and Z in a continuous way new Heusler

alloys with novel properties emerge.3 Galanakis and collabo-

rators have elucidated the origin of the gap in these alloys

and have shown that the total spin-magnetic moments exhibit

a Slater-Pauling behavior being per unit cell in lB the total

number of valence electrons minus 24.4

A special case in the applications are the compounds

made up of magnetic elements with exactly 24 valence elec-

trons which should have a total zero spin magnetic moment

in the case of half-metallicity. These alloys should be of spe-

cial interest for applications since they create no external

stray fields and thus exhibit minimal energy losses. They

should be named as half-metallic fully-compensated ferri-

magnets (HM-FCFs)5 and not half-metallic antiferromagnets

which was the initial term used by van Leuken and de Groot6

when studying the semi-Heusler compound CrMnSb in

1995. Contrary to conventional antiferromagnets here, the

compensation of the spin magnetic moments stems from dif-

ferent magnetic sublattices, e.g., in CrMnSb Cr and Mn

atoms have antiparallel spin magnetic moments of about the

same magnitude.6 Due to the origin of the annihilation of the

spin moments, the microscopic magnetization at finite tem-

perature is not zero as in conventional antiferromagnets.7

Heusler alloys with 24 valence electrons which have been

predicted to be HM-FCFs include the Mn3Ga,5 Cr2MnZ

(Z¼ P,As,Sb,Bi) alloys,8,9 the Co-doped Mn2VZ (Z¼Al,Si)

half-metallic ferrimagnetic alloys,10 and the Cr-doped

Co2CrAl.11

Experimentally Meinert et al.12 have tried unsuccess-

fully due to disorder to achieve a HM-FCF alloy by growing

(Mn0.5Co0.5)2 VAl films. An alternative route are the Heusler

alloys crystallizing not in the usual L21 structure (prototype

Cu2MnAl) but in the so-called XA structure (prototype Hg2

TiCu) susceptible to occur when the valence of the X atom is

smaller than the valence of the Y transition metal atom.3 In

the latter structure, the four sites (A, B, C, and D) in the unit

cell are occupied in the sequence X-X-Y-Z instead of the X-

Y-X-Z sequence in the L21 structure and the two X atoms

are no more equivalent (see Fig. 1 in Ref. 9 for the structure).

Recently Graf et al.13 have grown bulk samples of the

Cr2CoGa alloy made up from polycrystalline ingots in the

XA structure, which has 24 valence electrons and in accord-

ance to the Slater-Pauling rule, it is expected to be a HM-

FCF. The aim of the present letter is to study the 24-valence

compounds Cr2CoGa, Cr2FeGe, Cr2MnAs, and Cr3Se alloys

in both the XA and L21 structures using ab-initio calcula-

tions. Our results show that for Cr2CoGa and Cr2FeGe, the

FIG. 1. (Color online) Calculated total energy as a function of the lattice con-

stant for both the XA and L21 structures. Note that, we have set as zero in

each case, the total energy corresponding to the equilibrium lattice constant.
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XA structure is the most favorable with a gap in the spin-up

band and spin-polarization reaching the 100%. Moreover in

the case of XA-Cr2CoGa, the estimated value of the Curie

temperature exceeds 1500 K and it is expected to be a proto-

type for achieving a perfect HM-FCF.

Since the equilibrium lattice constants are not known,

we calculated them from total energy calculations employing

the full-potential linear augmented plane-waves method

(FLAPW)14 in the FLEUR implementation15 in conjunction

to the Perdew-Burke-Ernzerhof formulation of the general-

ized gradient approximation (GGA) to the exchange-correla-

tion potential.16 The calculated curves are presented in Fig. 1

for all four compounds under study and for both structures

(note that for Cr3, Se we cannot distinguish between XA and

L21 structures). Moreover in Table I, we present the calcu-

lated equilibrium lattice constants and the energy difference

between the one for the XA and the one for the L21 structure.

Calculated values are close for both structures which is

expected; for XA, they are slightly smaller. Also, we do not

remark large deviations among the four compounds since Cr,

Mn, Fe, and Co have similar atomic radius and obtained val-

ues are close to the lattice constants of various binary semi-

conductor. When the Y atom is Co or Fe, the XA structure is

more stable and especially for Cr2CoGa, the energy differ-

ence is �0.7 eV, a pretty large value and the lines for the

two structures are well separated over the whole studied lat-

tice range contrary to Cr2FeGe where XA and L21 are degen-

erated for values larger than 5.9 Å. When we attend

Cr2MnAs, the L21 structure becomes the more favorable

one; note that for Cr2MnSb studied in Ref. 9, the two struc-

tures were almost degenerated. Thus, Cr2CoGa seems to be

the most well-suited to grow in the XA structure as shown

experimentally in Ref. 13. We should also note that in Ref.

13, its lattice constant was determined to be 5.81 Å almost

identical to our calculated value of 5.80 Å.

In Fig. 2, we present the calculated total density of states

(DOS) for all four compounds and for both structures at the

equilibrium lattice constants. We have focused around the

half-metallic gap and the insets present the DOS over a wider

energy range. For the L21 structure, the Cr2CoGa and

Cr2FeGe alloys show no gap which has been discussed in

Ref. 17 in terms of the exchange splitting of the Co(Fe) d-

states. Cr2MnAs presents a gap in the spin-up band but the

Fermi level falls slightly below the gap as in Cr2MnSb

alloy.9 As a result, the absolute value of the spin-polarization

(P) at the Fermi level defined as the ratio j N"�N#

N"þN# j where N: is

the number of electrons at the Fermi level with spin-up and

N; the electrons of spin-down character, presented in Table I

for the L21 structure is very small. When we move to the XA

structure now at the C site is a Cr atom and the large

exchange splitting of the Cr d-states restores the half-metal-

lic gap in the spin-up band (we cannot use the terms majority

and minority spins since both spin-directions contain the

same number of electrons) and the Fermi level falls within

the half-metallic gap. The gap is pretty large being about

0.5–0.6 eV. Cr2MnAs in the XA structure also shows a half-

metallic gap and similar is the situation for Cr3Se but in the

latter, the Fermi level falls near the left edge of the gap and

P presented in Table I is 75% far below the values for the

other three alloys in the XA structure. Note that, we do not

have a real gap and thus, P is not exactly 100% but exceeds

90% meaning that more than 95% of the electrons are of

spin-down character. Finally, since the Fermi level falls for

both Cr2CoGa and Cr2FeGe in the middle of the gap, we

expect to retain a large value of P upon compression or

expansion since these result to a shift of the Fermi level

towards smaller or larger values of the energy, respec-

tively.18 Calculations for both alloys at the experimental lat-

tice constants of zinc-blende CdS (5.65 Å), InP (5.87 Å), and

InAs (6.06 Å) semiconductors have produced for P values of

95%, 92%, and 91%, respectively, for Cr2CoGa and 92%,

97%, and 96% for Cr2FeGe. Thus, an extremely high spin-

polarization is preserved over a wide lattice constant region.

The electronic properties are reflected also on the spin

magnetic moments presented in Table II. In the case of the

XA structure, the total spin magnetic moment for all com-

pounds is close to zero and Cr atoms are antiferromagneti-

cally coupled between them while Co(Fe,Mn) carry smaller

spin moments resulting in the desired half-metallic fully-

compensated ferrimagnetism. Cr2CoGa and Cr2FeGe alloys

TABLE I. For all four compounds under study and for both XA and L21 lat-

tice structures, we present the calculated equilibrium lattice constant (aeq),

the energy difference between the XA and L21 structures (DE), the absolute

value of the spin-polarization at the Fermi level (P), and finally, the calcu-

lated Curie temperature within the mean-field-approximation taking into

account only the inter-sublattice interaction Tinter
C and both the intra- and

inter-sublattice interactions Tall
C .

aeq (Å) DE (eV) P(%) Tinter
C (K) Tall

C (K)

XA L21 XA L21 XA L21 XA L21

Cr2CoGa 5.80 5.88 �0.70 93 45 1225 210 1520 125

Cr2FeGe 5.76 5.84 �0.15 92 24 667 70 748 2

Cr2MnAs 5.78 5.87 0.25 95 52 545 600 610 330

Cr3Se 5.90 — 75 770 692

FIG. 2. (Color online) Total DOS for both XA and L21 structures for a

region 60.5 eV around the Fermi level. Insets present the DOS over a much

wider energy region. The zero energy is assigned to the Fermi level and the

positive DOS values correspond to the spin-up electrons and negative DOS

values to the spin-down electrons.
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in the L21 structure have total spin magnetic moments which

considerably deviate from the zero spin moment predicted

by the Slater-Pauling rule for perfect half-metals being even

about 5.5 lB for Cr2CoGa. Cr3Se alloys is at the edge of

being half-metallic since the Fermi level is at the left edge of

the gap and thus, it also presents a total spin magnetic

moment close to the zero value.

For realistic applications, one of the most important fea-

tures is the Curie temperature TC. We have estimated using

the methodology developed in Ref. 18 and employing the

multi-sublattice mean-field-approximation which was found

to give accurate results for Heusler compounds like the ones

under study here. Note also that, our formalism is imple-

mented in conjunction to the augmented spherical waves

method (ASWs)19 but results using GGA20 concerning the

electronic and magnetic properties at the equilibrium lattice

constants were found to be in perfect agreement to the

FLAPW results. In Table I, we have gathered our results for

both structures taking into account only intersublattice inter-

actions and both intra- and inter-sublattice interactions

(denoted as Tall
C ). We remark that the former ones give the

main contribution to the TC as for the half-metallic ferromag-

nets like Co2 MnSi studied in Ref. 18. As shown in Table I,

inclusion of the intrasublattice interactions further increases

the TC value for the XA compounds while the opposite

occurs for the L21 ones. For both cases where Y is Co or Fe,

Tall
C is much larger for the half-metallic XA structure than

the L21 one reaching even a value of 1520 K for Cr2CoGa

and making it a perfect candidate for applications. For

Cr2MnAs, Tall
C is also larger for the XA structure, while for

Cr3Se, it is about 700 K. Thus, we remark that the high value

of the TC is intrinsically related to the existence of half-met-

allicity since the latter one stabilizes the ferro- or ferri-mag-

netism in Heusler alloys as discussed extensively in Ref. 18.

We have performed extensive ab-initio electronic struc-

ture calculations for the 24-valence Cr2CoGa, Cr2FeGe,

Cr2MnAs, and Cr3Se alloys in both the XA and L21 struc-

tures. Our results suggest that, all alloys in the XA structure

are half-metallic fully-compensated ferrimagnets with high

value of the Curie temperature. For the alloys containing Co

and Fe, the XA lattice structure is also energetically favor-

able with respect to the L21 which corresponds to non half-

metallic alloys. Cr2CoGa alloy seems to be the most well

suited to achieve a half-metallic fully compensated ferrimag-

net (also known as half-metallic antiferromagnet) since it

has been already grown experimentally as shown in Ref. 13

and it combines a series of unique features: (1) XA structure

is favored over all the studied lattice constant range, (2) the

spin-up gap is wide and the Fermi level is at the middle of

the gap and thus, it presents high degree of spin-polarization

for a wide range of lattice constants, and (3) the Curie tem-

perature is extremely high reaching the 1520 K which is the

largest with respect to known Heusler alloys.3
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TABLE II. Spin magnetic moments (in lB) for all four Cr2YZ compounds

under study at the calculated equilibrium lattice constants. The values for

the sp atom (Z) are not presented since they are negligible.

XA structure L21 structure

Sites A B C A B C

Cr Cr Y Total Cr Y Cr Total

Cr2CoGa 2.10 �1.93 �0.29 �0.07 2.29 0.97 2.29 5.56

Cr2FeGe 1.28 �1.57 0.26 �0.03 0.66 �2.29 0.66 �1.02

Cr2MnAs 1.08 �1.85 0.76 �0.03 1.36 �2.88 1.36 �0.21

Cr3Se 1.25 �2.34 1.25 0.09 1.25 �2.34 1.25 0.09
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